首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saini  Arun  Sharma  Deepak  Xia  Yuanyuan  Saini  Aman  You  Xiangyu  Su  Ying  Chen  Lihong  Yadav  Chandravati  Li  Xinping 《Cellulose (London, England)》2021,28(13):8445-8457

Eco-friendly sustainable materials provide an appealing template to replace contemporary synthetic-nonrenewable resource-based materials while maintaining the acceptable material properties to meet the performance requirements. Here, a layer-by-layer (LBL) self-assembly technique was used for fabricating multilayer composite films using all bio-based polymers/polysaccharides, i.e. cationic guar gum (CGg), carboxylated cellulose nanocrystals (cCNCs) and hydroxypropyl methylcellulose (HPMC). A five layered composite film was fabricated by depositing polymeric layers as follows: CGg→cCNCs→HPMC→cCNCs→CGg. The structural analysis of (CGg/cCNCs/HPMC)5 L multilayered composite films indicated the existence of electrostatic interaction as well as H-bonding between polymeric layers that resulted in homogenous, dense and compact film surface with improved smoothness and strength properties. As compared to pure CGg film, the (CGg/cCNCs/HPMC)5 L multilayered composite films showed improved tensile strength (84.8?% increment) and modulus (29.19?% improvement). Importantly, the deposition of HPMC layer contributed in achieving multilayer composite films with more flexible behavior (46.55?% improvement in elongation at break). Furthermore, owing to the high transparency (89.5?% transmittance), appreciable gas and oil barrier performance and resistance to various solvents (e.g. acetone, THF and DMAc), these multilayer films are promising candidates for various applications including renewable/sustainable packaging materials.

  相似文献   

2.
Relatively well crystallized and high aspect ratio Mg-Al layered double hydroxides(LDHs) were prepared by coprecipitation process in aqueous solution and further rehydrated to an organic modified LDH(OLDH) in the presence of surfactant. The intercalated structure and high aspect ratio of OLDH were verified by X-ray diffraction(XRD) and scanning electron microscopy(SEM). A series of poly(propylene carbonate)(PPC)/OLDH composite films with different contents of OLDH were prepared via a melt-blending method. Their cross section morphologies, gas barrier properties and tensile strength were investigated as a function of OLDH contents. SEM results show that OLDH platelets are well dispersed within the composites and oriented parallel to the composite sheet plane. The gas barrier properties and tensile strength are obviously enhanced upon the incorporation of OLDH. Particularly, PPC/2%OLDH film exhibits the best barrier properties among all the composite films. Compared with pure PPC, the oxygen permeability coefficient(OP) and water vapor permeability coefficient(WVP) is reduced by 54% and 17% respectively with 2% OLDH addition. Furthermore, the tensile strength of PPC/2%OLDH is 83% higher than that of pure PPC with only small lose of elongation at break. Therefore, PPC/OLDH composite films show great potential application in packaging materials due to its biodegradable properties, superior oxygen and moisture barrier characteristics.  相似文献   

3.
An innovative process for the adsorption of the hydrophobic Basil-Oil (BO) into the hydrophilic food byproduct chitosan (CS) and the development of an advanced low-density polyethylene/chitosan/basil-oil (LDPE/CS_BO) active packaging film was investigated in this work. The idea of this study was the use of the BO as both a bioactive agent and a compatibilizer. The CS was modified to a CS_BO hydrophobic blend via a green evaporation/adsorption process. This blend was incorporated directly in the LDPE to produce films with advanced properties. All the obtained composite films exhibited improved packaging properties. The film with 10% CS_BO content exhibited the best packaging properties, i.e., 33.0% higher tensile stress, 31.0% higher water barrier, 54.3% higher oxygen barrier, and 12.3% higher antioxidant activity values compared to the corresponding values of the LDPE films. The lipid oxidation values of chicken breast fillets which were packaged under vacuum using this film were measured after seven and after fourteen days of storage. These values were found to be lower by around 41% and 45%, respectively, compared with the corresponding lipid oxidation values of pure LDPE film.  相似文献   

4.
Poly(lactic acid) (PLA) is the most suitable for biodegradable packaging film because of its excellent integrated property, but the poor gas barrier property is its weakness. In this study, a nanocomposite film based on PLA incorporated with 0‐, 1‐, 3‐, 5‐, 10‐, or 15‐wt% nano‐Ag was developed. Effect of multiscale structure on the barrier properties of PLA/nano‐Ag films was studied. The PLA nanocomposite film with 5‐wt% nano‐Ag had the lowest water vapor permeability (WVP) value. Oxygen transmission rate (OTR) value for PLA nanocomposites with 3‐wt% nano‐Ag was found to be the lowest among all the samples. Multiscale structure was demonstrated by the scanning electron microscopy, Fourier transform‐infrared spectroscopy, X‐ray diffraction measurement, and differential scanning calorimetry results. The crystallinity of the PLA phase increased with the content of nano‐Ag in the PLA composites. The evolution of the PLA phase crystallinity could improve the barrier properties of PLA/nano‐Ag composite films for food packaging applications. From the view of multiscale structure, it is better to achieve a balance among short‐range conformation in the amorphous region, long‐range‐ordered structure, and ordered aggregated structure to improve the barrier properties of PLA/nano‐Ag composite films.  相似文献   

5.
Chitosan film was immersed in NaOH solution with xylan to simply prepare active chitosan/xylan film. FT-IR, XRD, FE-SEM, AFM and XPS were used to evaluate the effects of xylan on the structure and morphology of chitosan film, and a wide variety of material characteristics of the chitosan/xylan composite films were investigated. The results showed that the xylan chains entered into the gap of chitosan film and became nodules, leading to strong hydrogen bonds and electrostatic interactions between chitosan and xylan. Moreover, the introduction of xylan not only resulted in stronger crystallinity and a more compact structure of chitosan film, but also had an important effect on the properties of chitosan film. The tensile strength, breaking elongation and anti-ultraviolet performance of the chitosan/xylan films were improved greatly with the increasing concentration of xylan; the water vapor transmission rate, water absorption rate and oxygen barrier property of chitosan/xylan composite films were higher than those of chitosan film; chitosan/xylan composite films still showed hydrophobicity when the xylan concentration was more than 1 %. The chitosan/xylan composite film has more potential to be used as food packaging than pure chitosan film.  相似文献   

6.
Highly flexible nanocomposite films of nanocrystalline cellulose acetate (NCCA) and graphene oxide (GO) were synthesized by combining NCCA and GO sheets in a well-controlled manner. By adjusting the GO content, various NCCA/GO nanocomposites with 0.3–1 wt% GO were obtained. Films of these nanocomposites were prepared using the solvent casting method. Microscopic and X-ray diffraction (XRD) measurements demonstrated that the GO nanosheets were uniformly dispersed in the NCCA matrix. Mechanical properties of the composite films were also studied. The best GO composition of the samples tested was 0.8 wt%, giving tensile strength of 157.49 MPa, which represents a 61.92 % enhancement compared with NCCA. On the other hand, the composite films showed improved barrier properties against water vapor. This simple process for preparation of NCCA/GO films is attractive for potential development of high-performance films for electrical and electrochemical applications.  相似文献   

7.
Poly(lactic acid) (PLA)/poly(propylene carbonate) (PPC)/mica composites with different amount of chain extender (CE) were melt compounded and then processed via two routes (compression molding and uniaxial stretching) into sheets and films. The tensile, thermal, and oxygen barrier properties of all the samples were investigated. Tensile test showed that the tensile strength and elongation at break of all films were much higher than that of all sheets, especially for PLA/PPC/mica with 0.9‐wt% CE composite (CM3(CE)0.9) film. The crystallinity of all films increased significantly after uniaxial stretching of sheet samples. The Fourier transform infrared spectroscopy (FTIR) results proved the chemical reactions occurred between PLA/PPC and CE. Scanning electron microscope (SEM) analysis revealed that compatibility and interfacial adhesion of all samples were improved after adding mica and CE, and they were further enhanced after uniaxial stretching. The addition of CE was not favorable to improve the oxygen barrier performance of PLA/PPC/mica sheet samples. However, the oxygen barrier performance of film samples was significantly improved after uniaxial stretching. In particular, the CM3(CE)0.9 film had the lowest oxygen permeability coefficient (1.4 × 10?15 cm3·cm/(cm2·s·Pa)), and this was the best oxygen barrier properties reported in the literature for PLA‐based composites, which was comparable with PA film. This study demonstrated the high efficiency of uniaxial stretching on improvement of properties of composites, which would promote the application of biodegradable polymers in oxygen sensitive food packaging.  相似文献   

8.
Flexible composite films were produced by impregnating aqueous phenol formaldehyde (PF) resin into water-swollen cellulose nanofibril (CNF) films. CNF films were prepared using a pressurized filtration method in combination with freeze drying. The freeze-dried films were swollen with water then impregnated with PF resin by soaking in aqueous resin solutions of varying concentrations. Small amounts of PF slightly enhanced the tensile properties of CNF films. The formulation with the best mechanical properties was CNF/PF films with 8 wt % resin exhibiting tensile stress and toughness of 248 MPa and 26 MJ/m3, respectively. Resin concentrations higher than about 8 % resulted in composites with decreased tensile properties as compared to neat CNF films. The wet strength of the composite films was significantly higher than that of the neat CNF films. The resulting composites showed greater resistance to moisture absorption accompanied by reduced thickness swelling when soaked in water as compared to neat CNF films. The composites also showed decreased oxygen permeability at low humidity compared to neat films, but the composites did not show improved barrier properties at high humidity.  相似文献   

9.
This study is aimed to explore the properties of cellulose nanocrystals (CNC)/polyvinyl alcohol (PVA) composite films with and without 1,2,3,4‐butane tetracarboxylic acid (BTCA), a nontoxic crosslinker. CNC and CNC‐PVA nanocomposite films are prepared using solution‐casting technique. Differential scanning calorimetry (DSC) analyses show that crosslinking increased the glass transition temperature but reduced the melting temperature and crystallinity. Furthermore, high CNC concentrations in the PVA matrix interfere with PVA crystallinity, whereas in specific ratio between CNC and PVA, two different crystalline structures are observed within the PVA matrix. Film surfaces and fracture topographies characterized using scanning electron microscope indicate that at certain CNC‐PVA ratios, micron‐sized needle‐like crystals have formed. These crystalline structures correlate with the remarkable improvement in mechanical properties of the CNC‐PVA nanocomposite films, that is, enhanced tensile strain and toughness to 570% and 202 MJ m?3, respectively, as compared to pristine PVA. BTCA enhances the tensile strain, ultimate tensile stress, toughness, and modulus of CNC films compared to pristine CNC films. Water absorption of crosslinked CNC and CNC‐PVA nanocomposite films is significantly reduced, while film transparency is significantly improved as a function of PVA and crosslinker content. The presented results indicate that CNC‐PVA nanocomposite films may find applications in packaging, and though materials applications.  相似文献   

10.
In this study, a bio-based composite prepared from cross-linked polyvinyl alcohol/starch/cellulose nanofibril (CNF) was developed for film packaging applications. For this purpose, CNF, as reinforcing phase, was initially isolated from aspen wood sawdust (AWS) using chemo-mechanical treatments, and during these treatments, hydrolysis conditions were optimized by experimental design. Morphological and chemical characterizations of AWS fibers were studied by transmission electron microscopy, scanning electron microscopy, Kappa number, and attenuated total reflectance-Fourier transform infrared spectroscopy, as well as National Renewable Energy Laboratory and ASTM procedures. Morphological images showed that the diameter of the AWS fibers was dramatically decreased during the chemo-mechanical treatments, proving the successful isolation of CNF. Moreover, chemical composition results indicated the successful isolation of cellulose, and Kappa number analysis demonstrated a dramatic reduction in lignin content. Mechanical, morphological, biodegradability, and barrier properties of biocomposites were also investigated to find out the influence of CNF on the prepared biocomposite properties. The mechanical results obtained from tensile analysis revealed that Young’s modulus and ultimate tensile strength of biocomposite films were enhanced with increasing CNF concentration, while a significant decrease was observed in elongation at break at the same concentration of CNF. Furthermore, with adding CNF, barrier properties and resistance to biodegradability were increased in films, whereas film transparency gradually declined.  相似文献   

11.
采用溶液混合法制备了不同含量的气相生长碳纤维(VGCF)增强形状记忆聚氨酯(SMPU)的复合材料薄膜,测试分析了纯SMPU及VGCF/SMPU复合材料薄膜的力学性能及形状记忆性能.结果表明,制得的复合材料薄膜在VGCF含量达到9 wt%时,VGCF在SMPU基体中仍具有较好的分散性;SMPU与VGCF复合后,得到的复合材料薄膜的拉伸强度和刚度有较大程度的提高,含量达到9 wt%时复合材料薄膜的拉伸强度比纯SMPU提高66%,弹性模量提高300%,储能模量也有较大程度提高;SMPU与VGCF复合后,形状记忆性能有一定的下降,但经过适当预处理后,其形状记忆性能可以基本接近纯SMPU.  相似文献   

12.
The aim of the present work was to utilize waste leather buff (WLB) as filler in cellulose and make biocomposites for packaging applications such as wrappers. Cellulose was dissolved in the environmentally friendly ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). To this solution, WLB was added in amounts of 5 to 25 wt.% of cellulose. The cellulose and cellulose/WLB composite films were prepared by regenerating the corresponding cast solutions in a water coagulation bath followed by washing and drying. These films were tested for their tensile properties, thermal stability, and morphology. The tensile modulus and strength of the composite films were lower than those of the matrix. The lowering of the tensile modulus and strength with increasing WLB loading was attributed to the random orientation of the leather fibers of WLB in the composites. However, the % elongation at break of the composite films was found to be higher than that of the matrix and increased with increasing WLB content. The possible interaction between the matrix and WLB filler was probed using FT-IR analysis. The thermal stability of the composite films was higher than that of the matrix. The increase in thermal stability of the composite films was attributed to cross-linked collagen protein leather fibers in WLB. The fractographs of the composite films indicated good interfacial bonding between cellulose and leather fibers of WLB. These composite films may be considered for packaging and wrapping applications.  相似文献   

13.
Use of nanocomposites is a well-established approach in enhancing the mechanical and barrier properties of bionanocomposite film for food packaging applications. The seed mucilage of Ocimum basilicum was employed for the preparation of bionanocomposite films with montmorillonite (MMT) as nanofiller. The films were prepared by solvent-casting method at varied solution pH (1, 3, 5 and 9) and MMT loading (1%, 3%, 5%, 10%, 15% and 20%). The films were characterized for physical, mechanical and barrier properties in addition to microstructure and X-ray diffraction pattern. XRD analysis revealed the exfoliated dispersion of MMT at pH 9, confirming its effective interaction with the bionanocomposite film. Maximum film tensile strength was achieved at a lower MMT load of 5%. Water vapour permeability reduced with increase in MMT loading up to 5%, followed by an increase at higher MMT loadings. Film formed at pH 9 showed tensile strength of 17.3 ± 0.33 MPa and reduced water vapour permeability (WVP) of 0.21 g mm.m−2.hr−1.kPa−1.  相似文献   

14.
This research investigated the bioactive potential of jaboticaba peel extract (JPE) and proposed an innovative material for food packaging based on carrageenan films incorporated with JPE. The extract was obtained through microwave assisted extraction (MAE) according to central composite rotational design and the optimized conditions showed a combined antimicrobial and antioxidant actions when the extraction process is accomplished at 80 °C and 1 min. The carrageenan film incorporated with JPE was manageable, homogeneous and the presence of JPE into film increased the thickness and improved the light barrier of the film. The results of solubility and mechanical properties did not show significant differences. The benefit of using MAE to improve the recovery of bioactive compounds was demonstrated and the carrageenan film with JPE showed a great strategy to add additives into food packaging.  相似文献   

15.
Poly-(butylene adipate-co-terephthalate) (PBAT) has captured significant interest by dint of its biodegradability, superb ductility, promising processing properties and good final properties, but the insufficient barrier performance limits its application, especially in packaging field. In the present work, improved barrier properties of PBAT films were obtained by introducing an extremely low amount of graphene oxide nanosheets (GONS). O2 and water vapor permeability coefficients were decreased by more than 70% and 36% at the GONS loading of 0.35 vol%, respectively. The enhanced barrier performance was ascribed to the outstanding impermeability and well dispersion of GONS as well as the strong interfacial adhesion between GONS and PBAT matrix. Furthermore, tensile strength and Young's modulus of GONS/PBAT nanocomposite rise up to 27.8 MPa and 72.2 MPa from 24.6 MPa to 58.5 MPa of neat PBAT, respectively, showing a prominent increase of mechanical properties compared to neat PBAT. The incorporation of GONS also endowed PBAT matrix with an excellent thermal stability. These findings provide a significant guidance for fabricating high barrier films on a large scale.  相似文献   

16.
The multiple functional groups and unique two-dimensional (2D) morphology make chemically modified graphene (CMG) an ideal template for the construction of 2D nanocomposites with various organic/inorganic components. Additionally, the recovered electrical conductivity of CMG may provide a fast-electron-transport channel and can thus promote the application of the resultant nanocomposites in optoelectronic and electrochemical devices. This Concept article summarizes the different strategies for the bottom-up fabrication of CMG-based 2D nanocomposites with small organic molecules, polymers, and inorganic nanoparticles, which represent the new directions in the development of graphene-based materials.  相似文献   

17.
Reported are adsorption isotherms for guar and hydroxypropyl guar (HPG), with and without the presence of borate ions, onto surfactant free anionic polystyrene latex. Guar and HPG formed adsorbed monolayers on the hydrophobic latex. The presence of borate ions converted the nonionic guar and HPG into an anionic polyelectrolyte. However, there was no measurable influence of bound borate ions on the adsorption of guar or HPG onto anionic, hydrophobic latex. To underscore the unusual behavior of HPG-borate, a sample of HPG was oxidized to introduce carboxyl groups, and the adsorption of the carboxylated HPG onto anionic polystyrene was measured. Unlike HPG-borate, oxidized HPG did not adsorb onto negative polystyrene latex at neutral pH because of electrostatic repulsion. To explain the adsorption of negative HPG-borate onto negative latex, we proposed that as HPG-borate segments approach the latex surface, the negative electrostatic potential near the latex surface induces the detachment of the labile borate groups from HPG.  相似文献   

18.
The aim of the present work is to develop novel bio-based lightweight material with improved tensile and thermal properties. Spent tea leaf powder (STLP) was used as a filler to improve the tensile and thermal properties of polypropylene carbonate (PPC). Tea is an important material used in hotels and households, and spent tea leaf is a resulting solid waste. Composite films with STLP were obtained by the solution casting method. These films were characterized by optical and scanning electron microscopy, Fourier transform-infrared spectroscopy, thermogravimetric analysis, and tensile testing to examine the effect of filler content on the properties of the composites. The results showed that composite films have increased tensile strength due to enhanced interfacial adhesion between the filler and the matrix. In addition, the composite films also exhibited higher thermal degradation temperatures than pure polypropylene carbonate. The morphology results indicate that there is a good interface interaction between STLP and PPC. Results of the study reveal STLP to be a promising green filler for polymer plastics.  相似文献   

19.
高碘酸钠氧化法测定羟丙基瓜尔胶上仲羟基取代度   总被引:1,自引:0,他引:1  
高碘酸钠氧化可以使邻羟基C-C键发生高选择性断裂, 同时产生两分子醛基. 在pH=4.3及25 ℃的条件下, 对瓜尔胶及其衍生物羟丙基瓜尔胶进行高碘酸钠氧化, 采用红外光谱与核磁共振谱对氧化产物结构进行了表征. 结果表明, 氧化后的瓜尔胶和及羟丙基瓜尔胶结构中醛基主要以半缩醛的形式存在. 通过测定高碘酸钠的消耗量得到不同摩尔取代度羟丙基瓜尔胶糖单元上邻羟基的含量, 结合概率分析方法, 确定摩尔取代度分别为0.04, 0.14, 0.36, 0.51, 0.78, 1.05和1.53的羟丙基瓜尔胶在仲羟基上取代度分别为0.02, 0.09, 0.18, 0.30, 0.46, 0.59和1.03, 与其它方法得到的结果一致.  相似文献   

20.
The novel film structure of corn-zein coated on polypropylene (PP) synthetic film for packaging industry was developed to examine the feasibility of resulting coated films as an alternative water barrier performance for food packaging. The effects of coating formulation (solvent, corn-zein, plasticizer concentration and plasticizer type) on final properties of films were observed. Corn-zein is the most important protein of corn and has good film forming property. Composites structures of PP films coated with corn-zein were obtained through a simple solvent casting method. Polyethylene glycol (PEG) and glycerol (GLY) were used as plasticizer to increase film flexibility. Statistical analysis based on full factorial design was performed to observe coating formulation effects. The high water vapour barriers were obtained for films coated with coating formulation consisting of higher amounts of corn-zein plasticized by GLY. The lower glass transition temperatures (T g) of films were obtained by plasticization of films and T g decreased by increasing plasticizer content. The statistical analysis defined the key parameters of coating formulation that had major effects on the final properties of coated PP films as corn-zein, plasticizer concentration and plasticizer type. In conclusion, corn-zein coatings could have potential as an alternative to conventional synthetic polymers used in composite multilayer structures for food packaging applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号