首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analytical pyrolysis combined with gas chromatography/mass spectrometry was used to analyse the structure and quantity of aromatic components, mainly guaiacyl and hydroxyphenyl derivatives, directly from chemical pulps. The quantity of aromatic degradation products was determined using a new external calibration method. The external standard was analyzed similarly to the pulp sample, and the combined area of the degradation products formed, normalized to the sample amount, was used for calibration. The method was sensitive enough to detect aromatics from fully bleached softwood pulps at a concentration level of 0.4 wt.%.The effect of bleaching on lignin structures in softwood pulps was studied by following the changes in guaiacyl-type degradation product distribution. The residual lignin structures that had been modified during cooking were removed during the course of bleaching. The residual lignin in fully bleached pulps therefore was found to bear features characteristic of native lignin in addition to increased oxidation. A striking enrichment of hydroxyphenyl-type aromatic pyrolysis products was observed during bleaching. It is suggested that they are derived not only from lignin but also from other pulp components.  相似文献   

2.
Sorption of spruce acetylated galactoglucomannans (GGM) onto different pulps, among which unbleached and peroxide-bleached mechanical pulps, and unbleached and bleached kraft (BK) pulps, was studied as a means of understanding the retention of acetylated GGMs in mechanical pulping and papermaking. The fibre surface coverage of lignin and carbohydrates was estimated by X-ray photoelectron spectroscopy (XPS) or electron spectroscopy for chemical analysis (ESCA). GGM sorption was clearly favoured on kraft pulps. Hardly any differences in sorption were, however, observed between unbleached and BK pulps, even if the surface coverage of lignin was lower on the bleached pulp. Neither thermomechanical pulp (TMP) nor chemithermomechanical pulp (CTMP) manufactured from spruce sorbed any acetylated GGMs. Peroxide bleaching of the pulp did not increase sorption. Only CTMP produced from aspen sorbed some GGMs. The anionic charge of neither chemical nor mechanical pulps influenced GGM sorption.  相似文献   

3.
Very high yield sulphite pulps were produced by cooking black spruce wafers in pulping liquors at pH 7 or 10, containing 0.1% (on O.D. wood) of soluble anthraquinone (SAQ). These pulps had better strength properties relative to controls prepared without SAQ, breaking length and burst index being greater, on average, by 20%. Other improvements included: increased pulping rate, lower lignin contents at comparable pulp yields, and higher carbohydrate content at the same level of residual lignin in pulp (this resulted in an increase of total pulp yield by 2%). Results of cooks in liquors ranging in pH from 4 to 10, and under variable conditions of time (20–60 min) and temperature (120–160°C) suggested that: firstly, AQ does not act as a pulping catalyst at pH 4, and secondly, the sulphonate contents of AQ-catalyzed pulps are lower than those of the uncatalyzed controls. In the light of the lower sulphonate content, the higher strength is unexpected.  相似文献   

4.
Five pulping methods using different reagents were used for the delignification of almond shells: sodium hydroxide 7.5 % v/v for 24 h at 60 °C, potassium hydroxide 7.5 % v/v for 24 h at 60 °C, formic acid/water 90/10 v/v, organosolv with ethanol/water 60/40 v/v and sodium hydroxide 15 % v/v in an autoclave for 90 min at 120 °C. The resulting cellulose pulps were evaluated using TAPPI standard methods and X-ray diffraction (XRD) to determine the lignin content and crystallinity changes. After pulping, fibers were bleached with sodium chlorite and hydrogen peroxide to obtain pure cellulose. The resulting pulps were characterized by XRD and thermogravimetry to determine the cellulose purification rates and changes in crystallinity. Then, the different pulps were acetylated, hydrolyzed and homogenized to obtain cellulose nanofibers. Nanofiber sizes were assessed by atomic force microscopy and XRD to evaluate the effect of hydrolysis on nanofibers. Finally, nanopaper sheets were produced and the properties were compared to conventional micropaper. The different treatments influenced the amount of lignin eliminated, which had a direct relationship on the subsequent bleaching treatments to obtain pure cellulose. Hence, the different chemical methods influenced the crystallinity of the fibers which also influenced the yield of cellulose nanofibers and different nanopapers.  相似文献   

5.
Hot water extraction (HWE) of pulp in a flow-through reactor was evaluated as a method to purify paper-grade pulps. About 50–80 % of the xylan and up to 50 % of the lignin in unbleached birch Kraft pulp was extracted by the HWE without losses in cellulose yield. The residual xylan content in the extracted pulps was predominantly too high for dissolving-grade applications, but some of the pulps with a xylan content of 5–7 % might still be suitable as rayon-grade pulps. Increasing extraction temperature lowered the xylan content at which cellulose yield started to decrease. Furthermore, at any given xylan content, increasing extraction temperature resulted in cellulosic pulp with higher degree of polymerization. The extracted xylan was recovered almost quantitatively as xylo-oligosaccharides. The results suggest that HWEs at elevated temperatures may be applied to purify cellulosic pulps, preferably containing a low xylan content, and to recover the extracted sugars.  相似文献   

6.
Biobleaching studies using laccase mediator system (LMS) were carried out, under optimized conditions, on two unbleached Eucalyptus globulus kraft pulps, one produced by conventional way, with kappa number of 16.1, and another with kappa number of 14.5, obtained by modified kraft procedure with a high liquor/wood ratio and with black liquor replacement in the middle of the cooking. The pulp properties before and after LMS and alkaline extraction were evaluated in terms of kappa number, hexeneuronic acid content, viscosity, brightness and acid insoluble lignin content.The original milled wood sample and the kraft pulps were characterized by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and thermogravimetry/mass spectrometry (TG/MS). Eucalypt wood lignin produces guaiacol and syringol derivatives during pyrolysis. These lignin products can be detected with high sensitivity using the selected ion chromatograms even in the bleached pulp of low lignin content (about 0.5%). Py-GC/MS revealed that the lignin moieties were similarly altered during biobleaching as during pulping, which is exemplified by the preferential removal of aldehyde groups from the alkyl side groups. Semi-quantitative analysis of the pyrograms indicates that the lignin content of the biobleached pulps is reduced by about half in comparison with the unbleached pulps. The TG/MS results show that the hemicellulose content of wood was strongly modified during pulping resulting in higher thermal stability.  相似文献   

7.
Sugar cane bagasse pulps were obtained by ethanol/water organosolv process under acid and alkaline conditions. The best condition of acid pulping for the sugarcane bagasse was 0.02 mol/L sulfuric acid at 160 degrees C, for 1 h, whereas the best condition for alkaline pulping was 5% sodium hydroxide (base pulp) at 160 degrees C, for 3 h. For the residual lignin removal, the acid and alkaline pulps were submitted to a chemical bleaching using sodium chlorite. Pulps under acid and alkaline conditions bleached with sodium chlorite presented viscosities of 3.6 and 7.8 mPa x s, respectively, and mu-kappa numbers of 1.1 and 2.4, respectively. The pulp under acid condition, bleached with sodium chlorite was used to obtain carboxymethylcellulose (CMC). CMC yield was 35% (pulp based), showing mass gain after the carboxymethylation reaction corresponding to 23.6% of substitution or 0.70 groups -CH(2) COONa per unit of glucose residue. The infrared spectra showed the CMC characteristic bands and by the infrared technique it was possible to obtain a substitution degree (0.63), similar to the substitution degree calculated by mass gain (0.70).  相似文献   

8.
High purity cellulose from wood is an important raw material for many applications such as cellulosic fibers, films or the manufacture of various cellulose acetate products. Hitherto, multi-step refining processes are needed for an efficient hemicellulose removal, most of them suffering from severe cellulose losses. Recently, a novel method for producing high purity cellulose from bleached paper grade birch kraft pulp was presented. In this so called IONCELL process, hemicelluloses are extracted by an ionic liquid–water mixture and both fractions can be recovered without yield losses or polymer degradation. Herein, it is demonstrated that bleached Eucalyptus urograndis kraft pulp can be refined to high purity acetate grade pulp via the IONCELL process. The hemicellulose content could be reduced from initial 16.6 to 2.4 wt% while persevering the cellulose I crystal form by using an optimized 1-ethyl-3-methylimidazolium dimethylphosphate-water mixture as the extraction medium. The degree of polymerization was then reduced by a sulfuric acid treatment for subsequent acetylation of the pulp, resulting in a final hemicellulose content of 2.2 wt%. When pre-treating the pulp enzymatically with endoxylanase, the final hemicellulose content could be reduced even to 1.7 wt%. For comparison, the eucalyptus kraft pulp was also subjected to cold caustic extraction and the same subsequent acid treatment which led to 3.9 wt% of residual hemicelluloses. The performance in acetylation of all produced pulps was tested and compared to commercial acetate grade pulp. The endoxylanase-IONCELL-treated pulp showed superior properties. Thus, an ecologically and economically efficient alternative for the production of highest value cellulose pulp is presented.  相似文献   

9.
Currently, bleached eucalypt pulps are largely used for printing and writing (P&W) and sanitary (tissue) paper grades. Among the many pulp quality requirements for P&W and tissue paper production the xylan content is one of the most significant. For P&W papers, increasing xylans improve pulp refinability and strength properties but negatively affect bulk and drainability. For tissue paper, xylans are purportedly advantageous during paper drying in the Yankee cylinder but negatively affect paper bulk and may increase dusting during paper manufacture. On the other hand, bleachability is a very important parameter for both P&W and tissue grade pulps since bleaching cost is the second most significant in eucalypt bleached kraft pulp production. The aim of this study was evaluating the influence of eucalyptus pulp xylan content on its bleachability, refinability and drainability. A sample of industrial unbleached eucalyptus kraft pulp containing 15.6?% xylans was treated with various alkali charges at room temperature in order to obtain materials with different xylan contents. The pulps were bleached to 90 % ISO brightness with the O–DHT–(EP)–D sequence and evaluated for their refinability and drainability. By increasing the alkali concentration in the range of 10–70 g/L pulps of 14.5–5.9 % xylans were produced with no significant impact on cellulose crystallinity. The decrease of xylan content significantly decreased pulp bleaching chemical demand, water retention value and refinability and increased pulp drainability.  相似文献   

10.
No reliable method exists for measuring the cellulose fiber–fiber shear bond strength in paper. This paper reports a simple method for measuring the fiber–fiber shear bond strength by weakening the fibers independently of the bonds in a sheet of paper, using acid vapor, until all the fibers break across the fracture line. The bond strength is then calculated from the fiber strength, as measured by the zero span test, at the point where the fibers first are weakened such that they all break. The method was used to calculate the average bond strength of handsheets made out of two different pulps. The first pulp was a never dried, 60% yield, unbleached radiata pine. The bond strength was 25.0 ± 3.3 MPa. Drying the fibers before reslushing and making sheets reduced the bond strength by up to 33%, with the reduction depending on the severity of the drying treatment. The second pulp was a bleached dried softwood kraft and was used to investigate the effect of low consistency refining on bond strength. The bond strength increased from 13.7 ± 1.0 MPa for the sheets made from the unrefined pulp to 37.0 ± 1.0 MPa, for the sheets made from the most heavily refined pulp. The bond strength measurements are considerably higher than previous literature estimates for the shear bond strength. The causes for the discrepancy include stress concentrations in tests of single fiber–fiber bonds.  相似文献   

11.
Brewer’s spent grain (BSG) was evaluated for bleached pulp production. Two cellulose pulps with different chemical compositions were produced by soda pulping: one from the original raw material and the other from material pretreated by dilute acid. Both of them were bleached by a totally chlorine-free sequence performed in three stages, using 5% hydrogen peroxide in the two initial, and a 0.25 N NaOH solution in the last one. Chemical composition, kappa number, viscosity, brightness and yield of bleached and unbleached pulps were evaluated. The high hemicellulose (28.4% w/w) and extractives (5.8% w/w) contents in original BSG affected the pulping and bleaching processes. However, soda pulping of acid pretreated BSG gave a cellulose-rich pulp (90.4% w/w) with low hemicellulose and extractives contents (7.9% w/w and <3.4% w/w, respectively), which was easily bleached achieving a kappa number of 11.21, viscosity of 3.12 cp, brightness of 71.3%, cellulose content of 95.7% w/w, and residual lignin of 3.4% w/w. Alkaline and oxidative delignification of acid pretreated BSG was found as an attractive approach for producing high-purity, chlorine-free cellulose pulp.  相似文献   

12.
A method is presented which enables analysis of lignin precipitated on the surface of kraft pulp fibers. As experimental input, high-resolution atomic force microscopy phase images of the fiber surfaces have been recorded in tapping mode. A digital image analysis procedure—based on the watershed algorithm—is applied to distinguish between cellulose fibrils and the precipitated lignin. In this way, size distributions for the diameter of lignin precipitates on pulp fiber surfaces can be obtained. In an initial application of the method, three softwood kraft pulps were analyzed: a black liquor cook with a very high content of precipitated lignin, a bleached pulp where nearly no precipitated lignin is visible and an unbleached industrial pulp. The proposed method is suggested as an appropriate tool to investigate the kinetics of lignin precipitation and the structure of lignin precipitates in pulping and bleaching.  相似文献   

13.
Sugarcane bagasse Acetosolv pulps were bleached by xylanase and the pulps classified by using Fourier transform infrared (FTIR) spectroscopy and principal component analysis (PCA). Pulp was treated with xylanase for 4–8 h with stirring at 30°C. Some samples were further extracted with NaOH for 1 h at 65°C. FTIR spectra were recorded directly from the dried pulp samples by using the diffuse reflectance technique. Reduction in kappa number of 69% was obtained after sequence xylanase (4 h)-alkaline extraction. During bleaching the viscosity decreased only 12%. FTIR-PCA showed that the first three principal components (PCs) explained more than 90% of the total variance of the pulp spectra. PC2×PC1 plot showed that the points related to pulps from sequence xylanase (4 h)-alkaline extraction are different from the other. This group isenlarged by plotting PC3×PC1 or PC3×PC2 containing all pulps submitted to alkaline extraction. PC2 and PC3 are the principal factor for differentiation of the pulps. These PCs suffer influence of the ester bands (1740 and 1244 cm−1). On the other hand, the pulps bleached only with xylanase could not be differentiated from the nonbleached pulps.  相似文献   

14.
Conifers, which are the most abundant biomass species in Nordic countries, USA, Canada and Russia, exhibit strong resistance towards depolymerization by cellulolytic enzymes. At present, it is still not possible to isolate a single structural feature which would govern the rate and degree of enzymatic hydrolysis. On the other hand, the forest residues alone represent an important potential for biochemical production of biofuels. In this study, the effect of substrate properties on the enzymatic hydrolysis of softwood was studied. Stem wood spruce chips were fractionated by SO2–ethanol–water (SEW) treatment to produce pulps of varying composition by applying different operating conditions. The SEW technology efficiently fractionates different types of lignocellulosic biomass by rapidly dissolving hemicelluloses and lignin. Cellulose remains fully in the solid residue which is then treated by enzymes to release glucose. The differences in enzymatic digestibility of the spruce SEW pulp fibers were interpreted in terms of their chemical and physical characteristics. A strong correlation between the residual lignin content of SEW pulp and enzymatic digestibility was observed whereas cellulose degree of polymerization and hemicellulose content of pulp were not as important. For the pulps containing about 1.5 % (w/w) lignin, 90 % enzymatic digestibility was achieved at 10 FPU enzyme charge and 24 h of hydrolysis time.  相似文献   

15.
The investigation of polymers by gel permeation chromatography has become a standard method for the determination of the molecular weight distribution. In case of cellulose and pulps the samples are mostly carbanilated or nitrated in order to get them soluble in organic solvents. In this context it is important that the derivatives obtained represent the composition of the starting material. High molecular wood pulps were carbanilated and further prepared for chromatographic separation using different methods. For bleached and unbleached pulps, the influence of the refining conditions on the molecular weight distribution and on the percentage of the soluble portion of the derivatives was investigated. It could be shown that low-molecular portions of the cellulose samples were lost applying those refining methods which included precipitation steps. For unbleached pulps, the risk existed that part of the derivatives remained insoluble and formed gel-like particles. For some pulp samples better results could be obtained by elongation of the derivatization time. Some selected pulps were carbanilated and nitrated, and the corresponding results were compared.  相似文献   

16.
The surfaces of various mechanical pulp fibres, including thermomechanical pulp (TMP), chemithermomechanical pulp (CTMP), and alkaline peroxide mechanical pulp (APMP) fibres, were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), and X‐ray photoelectron spectroscopy (XPS). With SEM and AFM, the middle lamella material was observed to be non‐fibrillar and patch‐like, while the fibre secondary wall was observed to have a micro‐fibrillar structure. It was found that after the first‐stage refiner, lignin‐rich middle lamella remainders were present on the fibre surface of all three pulps, although most of the fibre surfaces exhibited a micro‐fibrillar structure. After the final‐stage refining, large amounts of granules were present on the TMP fibre surface. In contrast, most middle lamella remainders were still visible on the surface of CTMP fibres after the final‐stage refining and even after peroxide bleaching. XPS results have confirmed that the non‐fibrillar surface material is the lignin‐rich middle lamella remainder that contribute to the high surface lignin concentration. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
This study assesses the influence of commercial enzyme (FibreZyme? LBR) treatment applied to APMP pulp and to the mixture of 55 % Acacia CTMP75 pulp, 30 % soft-wood bleached chemical pulp (LBKP 90 from Chile) and 15 % hard-wood bleached chemical pulp (NPKP 90 from Indonesia). The treatment was conducted at different temperatures, reaction times and enzyme dosages. The APMP and mixed pulp treated with the enzyme showed a significant decrease of refining time to achieve the same refining degree (Schopper–Riegler freeness, °SR) and better mechanical–physical properties due to the development of fibrillation. The fibre morphology difference between before and after treatment was revealed by the microscopic observations performed by a scanning electron microscope (SEM). The SEM analysis showed that the surface of the enzyme-treated fibre had some swelling and fibrillar phenomenon that lead to strong paper properties such as tear index, tensile index and burst index.  相似文献   

18.
A series of pulps containing between 3.6 and 23% of lignin was prepared by a careful delignification of a high-yield bisulfite pulp. The pulps were subjected to isothermal pyrolysis in a Perkin-Elmer TGS-1 thermobalance. The measurements were carried out at 8 different temperatures from 325 to 360°C under nitrogen atmosphere. The results obtained indicate that the effect of lignin on degradation depends strongly on temperature. Below 330°C, the rate of degradation varied only little with lignin. This variation becomes more important at temperatures above 330°C in that the rate of degradation increases with decreasing lignin content. The apparent activation energy of degradation ranges from 41.4 kcal mol?1 at 23% of lignin to 67.0 kcal mol?1 at 3.7% of lignin.  相似文献   

19.
The effect of pH on the formation of precipitates (lignin, extractives and metals) on kraft pulp surfaces was examined by electron spectroscopy for chemical analysis, time-of-flight secondary ion mass spectrometry and atomic force microscopy (AFM). A softwood kraft pulp slurry from an oxygen delignification stage was diluted to 3% consistency with water or an acidic Z filtrate. After heating to 70 °C the pH was lowered from 11 to 2–5, using sulphuric acid. Lignin and extractives precipitated at pH values below 6, and their amounts increased with decreasing pH. Most of the precipitated lignin was found on the pulp surface after sheet forming, whereas the main part of the precipitated extractives could be easily washed away with water. The layer of precipitated lignin was apparently thicker than the layer of extractives. AFM showed the precipitated material as a granular phase. Neither surface morphology nor surface coverage depended on the addition of Z filtrate. The amount of metals ID the pulp and on the pulp surface decreased when pH was lowered to 2. More metals, such as Ca and Mg, were detected ID the pulps as well as on the sheet surfaces when the pulp was diluted with Z filtrate. Strength and bonding properties of the pulp sheets were slightly impaired by the precipitated material. Acidification appears to be the main reason for the precipitation of both lignin and extractives on the pulp surfaces. This should be taken into account when filtrates are recycled ID the bleaching or washing of pulps.  相似文献   

20.
The effect of lignin on free-radical formation in photoirradiated pulp was studied by means of electron spin resonance spectroscopy. Samples were irradiated with light of wavelength longer than 3400 Å as well as longer than 2537 Å. Radical formation in aspen lignin was observed before and after irradiation with light of wavelength longer than 3400 Å. Upon irradiation, free radicals were formed in a pulp sample with 0% lignin content only when oxygen was present. On irradiation with light longer than 2537 Å, in the presence of nitrogen, oxygen, and under vacuum, free-radical formation was found in all cases. The largest concentration of radicals was obtained under vacuum, the smallest in oxygen. It is evident that cellulose was protected from radiation by the presence of lignin. Increased aspen lignin content in pulp led to a decrease in the relative signal intensity of ESR spectrum, that is, a decrease of the yield of free radicals in the cellulose fraction in pulp. Irradiation with light in the presence of oxygen caused significant yellowing of the pulp sample, and these photooxidation and discoloration reactions occurred primarily on the surface of the sample irradiated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号