首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Department of Energy’s Office of the Biomass Program has set goals of making ethanol cost competitive by 2012 and replacing 30% of 2004 transportation supply with biofuels by 2030. Both goals require improvements in conversions of cellulosic biomass to sugars as well as improvements in fermentation rates and yields. Current best pretreatment processes are reasonably efficient at making the cellulose/hemicellulose/lignin matrix amenable to enzymatic hydrolysis and fermentation, but they release a number of toxic compounds into the hydrolysate which inhibit the growth and ethanol productivity of fermentation organisms. Conditioning methods designed to reduce the toxicity of hydrolysates are effective, but add to process costs and tend to reduce sugar yields, thus adding significantly to the final cost of production. Reducing the cost of cellulosic ethanol production will likely require enhanced understanding of the source and mode of action of hydrolysate toxic compounds, the means by which some organisms resist the actions of these compounds, and the methodology and mechanisms for conditioning hydrolysate to reduce toxicity. This review will provide an update on the state of knowledge in these areas and can provide insights useful for the crafting of hypotheses for improvements in pretreatment, conditioning, and fermentation organisms.  相似文献   

2.
The development and production of fossil fuel alternatives have become one of the main focal points in recent investigations. Lignocellulosic biomass is a renewable source of fermentable sugars for second-generation biofuels and chemicals via biotechnological pathways. However, the presence of lignin and hemicellulose in lignocellulosic biomass makes it difficult for the biomass to be hydrolyzed or digested during fermentation. Thus, effective biomass pretreatment is vital. The present review shows that chemical pretreatment is the current preferred method to obtain high sugar yields at low cost, with dilute acid and alkaline hydrolysis as the two most reported technologies. Dilute acid favours hydrolysis of the hemicelluloses whereas alkaline hydrolysis targets the lignin fraction. Both methods have merits and demerits, and have been combined with other treatments such as hydrothermal and enzymatic hydrolysis. Further investigation is required to improve the pretreatment processes and to ensure the economic viability of bioconversion.  相似文献   

3.
A combined sedimentation and ultrafiltration process was investigated for recovering cellulase enzymes during the hydrolysis of lignocellulosic biomass. Lignocellulosic particles larger than approx 50 μm in length were first removed via sedimentation using an inclined settler. Ultrafiltration was then used to retain the remaining lignocellulosic particles and the cellulose enzymes, while transmitting fermentable sugars and other small molecules. The permeate flux from the ultrafiltration step for a feed consisting of 0.22 w/v% cellulase is 64±5 L/m2-h, while that for a feed consisting of the settler overflow from a mixture 0.22 w/v% cellulase and 10 wt% lignocellulose fed to the settler is 130±20 L/m2-h. The higher permeate flux in the latter case is presumably due to binding of a portion of the cellulase enzymes to the lignocellulosic particles during hydrolysis and filtration, preventing the enzymes from fouling the membrane. A filter paper activity assay shows little loss in enzymatic activity throughout the combined sedimentation/ultrafiltration separation process.  相似文献   

4.
Preparation of hierarchically porous, heteroatom-rich nanostructured carbons through green and scalable routes plays a key role for practical energy storage applications. In this work, naturally abundant lignocellulosic agricultural waste with high initial oxygen content, hazelnut shells, were hydrothermally carbonized and converted into nanostructured ‘hydrochar'. Environmentally benign ceramic/magnesium oxide(Mg O) templating was used to introduce porosity into the hydrochar. Electrochemical performance of the resulting material(HM700) was investigated in aqueous solutions of 1 M H_2SO_4, 6 M KOH and1 M Na_2SO_4, using a three-electrode cell. HM700 achieved a high specific capacitance of 323.2 F/g in 1 M H_2SO_4(at 1 A/g,-0.3 to 0.9 V vs. Ag/Ag Cl) due to the contributions of oxygen heteroatoms(13.5 wt%)to the total capacitance by pseudo-capacitive effect. Moreover, a maximum energy density of 11.1 Wh/kg and a maximum power density of 3686.2 W/kg were attained for the symmetric supercapacitor employing HM700 as electrode material(1 M Na_2SO_4, E = 2 V), making the device promising for green supercapacitor applications.  相似文献   

5.
Applied Biochemistry and Biotechnology - A recently installed 100-L horizontal shaft custom-fabricated mixer/reactor, made of Carpenter 20 Cb-3 stainless steel and designed for high-solids,...  相似文献   

6.
A simple and efficient method of enhancing biomass saccharification by microwave-assisted pretreatment with dimethyl sulfoxide/1-allyl-3-methylimidazolium chloride is proposed. Softwood(pine wood(PW)), hardwoods(poplar wood, catalpa bungi, and Chinese parasol), and agricultural wastes(rice straw, wheat straw, and corn stover(CS)) were exploited. Results showed that the best pretreatment effect was in PW with 54.3% and 31.7% dissolution and extraction ratios, respectively. The crystal form of cellulose in PW extract transformed from I to II, and the contended cellulose ratio and glucose conversion ratio reached 85.1% and 85.4%, respectively. CS after steam explosion achieved a similar pretreating effect as PW, with its cellulose hydrolysis ratio reaching as high as 91.5% after IL pretreatment.  相似文献   

7.
Cereal porridges have low energy and nutrient density because of its viscosity. The objective of the present study was to evaluate the effect of irradiation on the reduction of viscosity and on the increasing solid content of cereal porridge. Four cereals, wheat, rice, maize (the normal starchy type) and waxy rice, were used in this study. The porridge with 3000 cP was individually prepared from cereal flour, gamma-irradiated at 20 kGy and tested. Gamma irradiation of 20 kGy was allowed that the high viscous and rigid cereal porridges turned into semi-liquid consistencies. The solid contents of all porridges could increase by irradiation, compared with non-irradiated ones. No significant differences of starch digestibility were observed in all cereal porridge samples. The results indicated that gamma irradiation might be helpful for improving energy density of cereal porridge with acceptable consistency.  相似文献   

8.
9.
This review deals with the use of solid catalysts for the enhancement of the efficiency and the development of a new generation of environmentally friendly, energy and resource efficient processes for the deep processing of lignocellulosic biomass to desired chemicals. The oxidative delignification of wood with hydrogen peroxide in the presence of the suspended TiO2 catalyst, the oxidation of wood with molecular oxygen in the presence of copper catalysts, the acidcatalyzed conversion of cellulose to glucose and levulinic acid, and the thermal conversion of lignin to fuel additives on solid acid catalysts are analyzed. New integrated processes based on the heterogeneous catalytic oxidation are suitable for the complex processing of lignocellulosic biomass to produce valuable chemicals and engine fuel components without the use of toxic and corrosion-active reagents.  相似文献   

10.
The construction of a gene encoding Lys-human proinsulin, its direct expression inE. coli, and the simple purification procedure are described here. The temperature inducible promotor was employed for induction in a very short time. The expression level could reach 20–30%. After simple downstream processing and only one step of Sephadex G50 purification, 150 mg recombinant Lys-human proinsulin with a purity of up to 90% could be obtained easily from 1L of high density fermentation medium. The obtained product is in the form of Met-Lys-human proinsulin because of the failure of the bacterial host to remove the initiator methionine residue. The Lys-human proinsulin could be changed into human insulin by trypsin and carboxypeptidase B treatment in later steps. After separation with DEAE-Sephadex A25, human insulin with expected amino acid composition and full native biological activity could be obtained with a yield of 50 mg/L of fermentation medium.  相似文献   

11.
Two new ethanologenic strains (FBR4 and FBR5) of Escherichia coli were constructed and used to ferment corn fiber hydrolysate. The strains carry the plasmid pLO1297, which contains the genes from Zymomonas mobilis necessary for efficiently converting pyruvate into ethanol. Both strains selectively maintained the plasmid when grown anaerobically. Each culture was serially transferred 10 times in anaerobic culture with sugar-limited medium containing xylose, but noselective antibiotic. An average of 93 and 95% of the FBR4 and FBR5 cells, respectively, maintained pLO1297 in anaerobic culture. The fermentation performances of the repeatedly transferred cultures were compared with those of cultures freshly revived from stock in pH-controlled batch fermentations with 10% (w/v) xylose. Fermentation results were similar for all the cultures. Fermentations were completed within 60 h and ethanol yields were 86–92% of theoretical. Maximal ethanol concentrations were 3.9–4.2% (w/v). The strains were also tested for their ability to ferment corn fiber hydrolysate, which contained 8.5% (w/v) total sugars (2.0% arabinose, 2.8% glucose, and 3.7% xylose). E. coli FBR5 produced more ethanol than FBR4 from the corn fiber hydrolysate. E. coli FBR5 fermented all but 0.4% (w/v) of the available sugar, whereas strain FBR4 left 1.6% unconsumed. The fermentation with FBR5 was completed within 55 h and yielded 0.46 g of ethanol/g of available sugar, 90% of the maximum obtainable. Author to whom all correspondence and reprint requests should be addressed. Names are necessary to report factually on available data. However, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA im plies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

12.
Applied Biochemistry and Biotechnology - An ammonia-based pretreatment method termed ammonia recycled percolation (ARP) was developed for pretreating herbaceous biomass like corn cobs/stover...  相似文献   

13.
14.
A shrinking-bed reactor was designed by the National Renewable Energy Laboratory to maintain a constant bulk packing density of cellulosic biomass. The high solid-to-liquid ratio in the pretreatment process allows a high sugar yield and avoids the need to flush large volumes of solution through the reactor. The shrinking-bed reactor is a promising pretreatment reactor with the potential for scale-up for commercial applications. To scale up the shrinking-bed reactor, it is necessary to understand the flow pattern in the reactor. In this study, flow field is simulated with computational fluid dynamics using a porous medium model. Different discrete “snapshots” and multiple steady states are utilized. The bulk flow pattern, velocity distribution, and pressure drop are determined from the simulation and can be used to guide reactor design and scale-up.  相似文献   

15.
The enzymatic reaction in the simultaneous saccharification and fermentation (SSF) is operated at a temperature much lower than its optimum level. This forces the enzyme activity to be far below its potential, consequently raising the enzyme requirement. To alleviate this problem, a nonisothermal simultaneous saccharification and fermentation process (NSSF) was investigated. The NSSF is devised so that saccharification and fermentation occur simultaneously, yet in two separate reactors that are maintained at different temperatures. Lignocellulosic biomass is retained inside a column reactor and hydrolyzed at the optimum temperature for the enzymatic reaction (50°C). The effluent from the column reactor is recirculated through a fermenter, which runs at its optimum temperature (20-30°C). The cellulase enzyme activity is increased by a factor of 2-3 when the hydrolysis temperature is raised from 30 to 50°C. The NSSF process has improved the enzymatic reaction in the SSF to the extent that it reduces the overall enzyme requirement by 30-40%. The effect of temperature on β-glucosidase activity was the most significant among the individual cellulase compounds. Both ethanol yield and productivity in the NSSF are substantially higher than those in the SSF at the enzyme loading of 5 IFPU/g glucan. With 10 IFPU/g glucan, improvement in productivity was more discernible for the NSSF. The terminal yield attainable in 4 d with the SSF was reachable in 40 h with the NSSF.  相似文献   

16.
高效转化来源丰富且可再生的木质纤维素制备化学品和燃料对建立可持续发展社会具有重要意义。木质纤维素利用的一条理想途径是将其主要成分纤维素、半纤维素和木质素在温和条件下高选择性地催化转化为关键平台化学品。本文综述了近年报道的有关纤维素、半纤维素和木质素或其模型分子中C–O键选择性活化生成葡萄糖、葡萄糖衍生物(包括葡萄糖苷、六元醇和葡萄糖酸)、木糖、阿拉伯糖和芳香化合物的新催化剂和新策略,阐述了决定催化性能的关键因素。本文还讨论了相关反应机理以深入理解C–O键选择性活化。纤维素由葡萄糖单元通过β-1,4-糖苷键连接而成,通过水解反应,选择性切断这些糖苷键可以获得葡萄糖或其低聚物。鉴于葡萄糖在水热条件下不稳定,发展纤维素温和条件下水解的酸催化剂至关重要。众多研究表明,均相酸催化剂(如无机酸,杂多酸等)具有强Br?nsted酸,在该水解反应中显示高的催化活性。另一方面,拥有强酸性基团-SO3H的固体酸也表现出优异的水解糖苷键性能,但是-SO3H官能团易于流失,限制了这类固体酸催化剂的循环使用。最近研究显示,一些催化剂尤其是碳材料上引入能够与纤维素形成氢键的官能团时,其催化纤维素水解性能显著增强。设计合成这类具备酸性位和氢键位协同效应的稳定固体酸催化剂是纤维素水解转化的一个颇具前景的研究方向。以醇替代水为溶剂实施纤维素醇解制葡萄糖苷是高效活化糖苷键的有效策略。杂多酸被证实为该醇解反应的高性能催化剂。在相同反应条件下,醇解产物葡萄糖苷较水解产物葡萄糖更为稳定,因此可以获得高的葡萄糖苷收率。开发稳定可重复利用的固体酸催化剂是纤维素醇解的关键。耦合水解与加氢或氧化反应可以直接将纤维素转化为相对稳定且具有广泛用途的多元醇或有机酸。目前已有一系列双功能催化剂被报道,这些催化剂通常组合了具备水解功能的液体酸或固体酸和具备加氢或氧化功能的贵金属或过渡金属(譬如Ru, Pt, Ni和Au)。其中杂多酸盐或含有磺酸官能团的固体酸负载Ru或Au双功能催化剂显示出优异的生成六元醇或葡萄糖酸的催化性能。半纤维素由葡萄糖、甘露糖、木糖、阿拉伯糖、半乳糖等单糖单元通过糖苷键连接而成,糖苷键选择性活化可生成各种单糖混合物。硫酸可以有效水解半纤维素,但是同时也易于催化所生成的单糖深度转化为呋喃及其衍生物。较之硫酸,酸性较弱的有机酸特别是二元羧酸(例如马来酸、草酸等)具有较高的单糖选择性。固体酸如酸性树脂,分子筛等亦可催化半纤维素水解反应,但树脂类催化剂中官能团的流失问题有待解决。木质素是由含甲氧基等取代基的苯丙烷单元通过一系列化学键连接而成的复杂大分子,其芳香单元间包括β-O-4,α-O-4和4-O-5等三种主要连接方式,选择性切断这些C–O键可获得高附加值的芳香化合物。水解和氢解是两类普遍用以活化木质素及其模型化合物C–O键的反应。酸和碱均可催化木质素及其模型化合物水解,但是通常需要苛刻条件获取高转化率。近期研究显示,通过对木质素Cα-OH预氧化,再以HCOOH/HCOONa实施水解反应,可以成功实现温和条件下有机溶剂提取木质素及其模型化合物的高效转化。另一方面,均相金属络合物(如Ni, Fe和Ru)或多相负载型金属催化剂(如Ni, Cu, Mo, Pt, Ru, Pd或Ru等)均可有效催化木质素及其模型化合物中C–O键氢解,获得芳烃化合物。在部分多相催化剂体系中,除C–O键活化断裂外,还伴随芳环深度加氢反应,产生较多环己烷衍生物。因此,设计合成具备氢解功能同时抑制过度加氢功能的催化剂是获得芳烃化合物的关键。  相似文献   

17.
18.
19.
The industrialisation of lignocellulose conversion is impeded by expensive cellulase enzymes required for saccharification in bioethanol production. Current research undertakes cellulase production from pretreated Saccharum spontaneum through Trichoderma viride HN1 under submerged fermentation conditions. Pretreatment of substrate with 2% NaOH resulted in 88% delignification. Maximum cellulase production (2603 ± 16.39 U/mL/min carboxymethyl cellulase and 1393 ± 25.55 U/mL/min FPase) was achieved at 6% substrate at pH 5.0, with 5% inoculum, incubated at 35°C for 120 h of fermentation period. Addition of surfactant, Tween 80 and metal ion Mn+2, significantly enhanced cellulase yield. This study accounts proficient cellulase yield through process optimisation by exploiting cheaper substrate to escalate their commercial endeavour.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号