首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Hydrophilic cotton textiles, used in hospitals and sportswear, are prone to the growth of microorganisms (bacteria, fungi) resulting in hygiene and health risks. Thus, healthcare concerns have motivated the interest for the development of multifunctional antimicrobial cotton fabrics. Moreover, cotton textiles are also used in medical applications such as wound dressings. Their functionalization with anti-inflammatory agents is desirable in order to accelerate cicatrisation in the treatment of chronic wounds. This review summarizes recent advances (from January 2016 to January 2021) on the modification and coating of cotton fabrics with nanostructures (mainly metal and metal oxide nanoparticles, functionalized silica nanoparticles) to provide them antimicrobial (antibacterial and antifungal) and anti-inflammatory properties.  相似文献   

2.
The purpose of this study was to examine antibacterial and antifungal activity of antibacterial finish based on Citric acid on cotton medical textiles. The ability to effectively reduce the number of gram-negative, gram-positive bacteria and yeast was evaluated, specifically comparing the antibacterial activity after two different drying/curing methods. Citric acid (CA) and diethyl–tetradecyl–[3–(trimethoxysilyl)-propyl] ammonium chloride (Quat) were used for hygiene and disinfection purposes of medical textiles in this study. It was applied by pad-dry process and its fixation to cellulose hydroxyls was enhanced either by high curing temperatures or microwaves (MW). Determination of antibacterial activity of finished products was performed according to ISO 20743:2007 standard before the washing and after the 10 washing cycles. Antibacterial activity was tested against gram-negative bacteria, Escherichia coli, gram-positive-Staphylococcus aureus and yeast, Candida albicans. Obtained results are confirming the possibility of eco-friendly CA application, for the purpose of antimicrobial finishing of cotton medical textiles. Prevention of nosocomial infections with the Citric acid is possible using both curing methods (convection and microwave) and furthermore, the treatment is durable up to 10 washing cycles. Citric acid, as one of the suitable active substances is crosslinked to the cellulose hydroxyls by the formation of ester linkages. Its antimicrobial effectiveness against the chosen microorganisms proved to be the best against S. aureus. Applied finish bath has additional crease proof effectiveness providing sufficient both antimicrobial and crease proof effectiveness, so as the durability against 10 washing cycles.  相似文献   

3.
Ethylcellulose (EC) nanoparticles have been widely investigated for their use as drug delivery systems. However, their application on the textile field has been hardly studied. In this work, the use of EC nanoparticles as nanocarriers of active or lipid soluble compounds and their subsequent deposition on cotton textile is proposed in order to obtain functional textiles. A UV protective textile has been obtained after deposition of EC nanoparticles loaded with a liposoluble UV filter on cotton fabrics. The EC/cotton affinity and the attachment mechanism of EC nanoparticles on cotton substrate was studied by means of thermal behaviour evaluation, estimation of adhesion work (WA) and wash resistance tests. It is proposed that during EC nanoparticles deposition on cotton fabric, entanglement of polymeric chains is favoured, thus improving adhesion of EC nanoparticles on cotton substrate. The functionality of cotton textile was assessed by ultraviolet protection factor (UPF) measurements, showing a high UPF value (UPF = 45). Evaluation of UPF as a function of washing cycles were carried out on treated cotton fabrics. Washed fabrics still provided good UV protection (UPF ≥ 25), evidencing the presence of nanoparticles after washing cycles and the durability of the conferred functionality.  相似文献   

4.
A low temperature and cost-effective process for antimicrobial finishing of cotton textiles has been developed by sol–gel method. The antimicrobial treatment was performed by treating cotton textile with silica sols from water glass and then with silver nitrate solution. The antimicrobial activity was determined by using E. coli as a model for Gram-negative bacteria. The results showed that the treated textile has an excellent antimicrobial effect and laundering durability. SEM analysis showed coarse surface morphological change on the water glass treated cotton textile. The residual concentration of silver ion on fabrics was informed by ICP-MS. XPS results indicated that two different states of silver were present on the surface of the antimicrobial textile.  相似文献   

5.
This article provides a comprehensive understanding of development of textiles functionalized with silver nanoparticles (AgNPs). There are three established methods to fabricate textiles functionalized with AgNPs, namely, solution‐immersion, layer‐by‐layer deposition, and sonochemical. In addition, several textile types such as cotton, wool, polyester, silk, cotton/polyester blend, polyamide, and regenerated cellulose have been used for the fabrication. The AgNP deposition mechanism on textiles is mainly due to electrostatic interaction between AgNPs and textile constituents. It was exhibited that the deposition of AgNPs on textiles can transform their textiles colors. In addition, it was demonstrated that the deposition of AgNPs on textiles is not permanent, particularly against washing treatment. Textiles modified with AgNPs have several promising applications such as antibacterial, antifungal, catalyst, electronic devices, water treatment, sun protection, air treatment, and surface‐enhanced Raman scattering, which are comprehensively discussed in this article. Future challenges in fabricating textiles functionalized with AgNPs remain on how this can be carried out to improve long‐term stabilization of AgNPs on textiles to achieve their permanent deposition by employing greener approaches.  相似文献   

6.
An ecological and viable approach for the in situ forming silver nanoparticles (AgNPs) on cotton fabrics has been used. Silver nanocoated fabric of brownish yellow color (AgNPs, plasmon color) was characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR). SEM images revealed that the surface of the modified cotton was rougher than that of normal cotton. In addition, SEM images showed the presence of AgNPs on the surface of the treated fabric. Silver mapping and elemental analysis of the silver nanocoated cotton fabric using EDS confirmed the presence of AgNPs in a homogeneous distribution. Also, FTIR spectra of silver nanocoated sample showed more intense and broad peaks with a slight red shift if compared with those of blank sample indicating the binding of AgNPs with cellulose macromolecules. Different coating levels and the impact of repeated washings have been evaluated against different microbial strains by growth inhibition zone. The results of antimicrobial studies reveal that the presence of a low coating level of nanosilver is enough for producing an excellent and durable antimicrobial cotton fabrics.  相似文献   

7.
In conjunction with an increasing public awareness of infectious diseases, the textile industry and scientists are developing hygienic fabrics by the addition of various antimicrobial and antiviral compounds. In the current study, sodium pentaborate pentahydrate and triclosan are applied to cotton fabrics in order to gain antimicrobial and antiviral properties for the first time. The antimicrobial activity of textiles treated with 3 % sodium pentaborate pentahydrate, 0.03 % triclosan, and 7 % Glucapon has been investigated against a broad range of microorganisms including bacteria, yeast, and fungi. Moreover, modified cotton fabrics were tested against adenovirus type 5 and poliovirus type 1. According to the test results, the modified textile goods attained very good antimicrobial and antiviral properties. Thus, the results of the present study clearly suggest that sodium pentaborate pentahydrate and triclosan solution-treated textiles can be considered in the development of antimicrobial and antiviral textile finishes.  相似文献   

8.
Surface coating of metal nanoparticles is one of the major aspects to be optimized in the design of antimicrobial nanoparticles. The novelty of this work is that antimicrobial derivatives have been used as stabilizers to protect silver nanoparticles (Ag NPs). Microbicidal activity studies of fabricated cotton textiles coated with these Ag@Antibio were performed. Protective ligand layers of Ag NPs resulted to be a deterministic factor in their antimicrobial activity. The best bactericidal activity was obtained for Fabric TAM (coated with Ag NPs with triarylmethane derivates in surface, Ag@TAMSH), with a bacterial decrease of 3 log units for the S. aureus strain. Intrinsic antibiotic activity and partial positive charge of the TAMSH probably enhanced their antimicrobial effects. Fabric Eu (coated with Ag NPs with eugenol derivates in surface, Ag@EugenolSH) and Fabric FQPEG (coated with Ag NPs embedded in PEG-fluoroquinolone derivatives in surface, Ag@FQPEG) displayed antibacterial activity for both Staphylococcus aureus and Pseudomonas aeruginosa strains. These coated antimicrobial cotton fabrics can be applied in different medical textiles.  相似文献   

9.
In this research, the effect of thymol on the antibacterial activity of cotton fabric when modified by low-temperature plasma was investigated. The modification consisted of plasma pre-functionalization followed by one-step wet treatment with thymol. Oxygen and nitrogen were used as the working gases in the plasma reactor. The results showed that plasma-treated samples can absorb more thymol than untreated samples. Thus, the antibacterial activity of the samples in this case, which was analyzed by the bacteria counting test, was increased considerably. Durability of the antibacterial property was also assessed. It was concluded that loading thymol on plasma-treated cotton fabric produced effective durable antibacterial textiles.  相似文献   

10.
A convenient method for in situ synthesis of silver nanoparticles was developed to realize the multifunction of cotton. The silver nanoparticles were obtained through reduction of silver ions by cotton under basic condition at room temperature. The as-synthesized silver nanoparticles achieved the coloration of cotton fibers. Heating increased the color strength of cotton fibers with silver nanoparticles. Mercerization treatment as a common finishing process enhanced the properties of cotton fibers modified by silver nanoparticles. The mercerized cotton exhibited brighter color and had very good colorfastness to washing. The cotton fibers treated with in situ synthesized silver nanoparticles possess strong antibacterial activity with excellent washing durability.  相似文献   

11.
A new photochemical method for a permanent flame retardant finishing of textiles made of cotton (CO), polyamide (PA) and polyester (PET) is described. Using a mercury vapour UV lamp vinyl phosphonic acid (VPA) can be fixed durable to different fabrics made of CO, PA and PET in the presence of a cross-linking agent and a photo-initiator. After a home laundering cycle up to 50 wt% of the reaction mixture is retained on the fabrics and the absolute phosphorus content was found to be more than 2.0% in all investigated cases. The photochemically modified textiles showed high levels of flame retardant performance and passed a vertical flammability test for protective clothing.  相似文献   

12.

Life-threatening diseases, especially those caused by pathogens and harmful ultraviolet radiation (UV-R), have triggered increasing demands for comfortable, antimicrobial, and UV-R protective clothing with a long service life. However, developing such textiles with exceptional wash durability is still challenging. Herein, we demonstrate how to fabricate wash durable multifunctional cotton textiles by growing in situ ZnO-TiO2 hybrid nanocrystals (NCs) on the surface of cellulosic fabrics. The ZnO-TiO2 hybrid NCs presented high functional efficiency, owing to their high charge transfer/separation. Ultrafine fiber surface pores, utilized as nucleating sites, endowed the uniform growth of NCs and their physical locking. The resulting fabrics presented excellent UV protection factors up to 54, displayed bactericidal efficiency of 100% against Staphylococcus aureus and Escherichia coli, and optimum self-cleaning efficacy. Moreover, the functionalized textiles exhibited robust washing durability, maintaining antibacterial and anti-UV-R efficiency even after 30 extensive washing cycles.

Graphical abstract
  相似文献   

13.
The outstanding advantages of N-halamine materials over other antimicrobial materials are their durable and rechargeable antimicrobial properties, as well as their efficacies in inactivating a broad spectrum of pathogens. Theoretically, the oxidative chlorine of antimicrobial cotton coated with N-halamine hydantoin diol can be restored upon loss of its biocidal efficacy after exposure to ultraviolet light. In this work nano-titania particles were added into the coating solutions containing N-halamine diol and 1,2,3,4-butanetetracarboxylic acid (BTCA), and the coatings were applied to produce antimicrobial cellulose with improved UV stability. The treated cotton fabrics were characterized by FT-IR, SEM, XRD, and XPS. The effects of the coatings on tensile strength and wrinkle recovery angle were investigated. Biocidal efficacies of fabrics coated with hydantoin diol and diol/TiO2 against Staphylococcus aureus (ATCC 6538) and Escherichia coli O157:H7 (ATCC 43895) were determined using a modified AATCC 100-1999 method and showed excellent antimicrobial properties against these two bacterial species within a brief contact times. It was found that the addition of Nano-TiO2 in the antimicrobial coatings, especially rutile titanium dioxide, could improve the UV light stability of the chlorinated fabrics coated with hydantoin diol significantly. The UV light stability of N-halamine coatings were enhanced with increasing amounts of rutile TiO2.  相似文献   

14.
This study deals to develop a simple and facile two-step dip-coating method using silver nanoparticles (AgNPs) and fluorine-free silane monomer, 3-(Trimethoxysilyl) propyl methacrylate (TMSPM) for the fabrication of hydrophobic coating on cotton fabric. The anti-wetting properties, surface morphology, chemical composition, and functionality of the cotton fabric before and after modification were well characterized by contact angle measurement, scanning electron microscope (SEM), and energy-dispersive X-ray spectrum (EDX) and FT-IR respectively. The fabricated cotton fabric displays strong durability against different pH solutions, different soft/hard mechanical treatments including adhesive peeling test, abrasion with tissue paper and finger wiping, home laundering, without losing the hydrophobic property. The contact angle values (water contact angle of 148.3 ?± ?2° and oil contact angle of 0°) imply that the modified cotton has considerable hydrophobic/oleophilic properties. Additionally, the modified hydrophobic/oleophilic cotton fabric exhibits self-cleaning and oil-water separation behavior for both industrial and household importance.  相似文献   

15.
SiO2 coatings and inorganic/organic polymer hybrid coatings were applied onto textiles, and the textile properties were investigated with respect to parameters of textile comfort as stiffness, water uptake, and air permeability. Two different types of textiles (viscose and polyamide) were dip-coated with coating solutions of a pure silica sol and a polymer-modified silica sol. Only with low concentrated coating solutions a sufficient low stiffness and therefore an appropriate textile comfort could be realized. Analogously the water uptake of the treated textiles was decreased and sufficient high values were only reached with highly diluted coating solutions. Therefore, it was investigated whether such diluted coating solutions could be used for modification of textiles to add new beneficial properties. To reach hydrophobic textile properties one sol was modified with perfluorooctyltriethoxysilane. For antimicrobial functionalization a second sol was modified with silver. It was shown, for the application of new textile properties like water repellency or antimicrobial activity only concentrations ≤1% were necessary. In this case, the increase of textile stiffness was appropriate low, so the textile comfort was preserved while new functional properties were applied. Therefore, the presented diluted coating agents could be appropriate means for textile refinement and offer new textile applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1562–1568, 2010  相似文献   

16.
Summary: Inorganic-organic hybrid polymer sols where modified with differently prepared as well as commercial titania nanoparticles, to obtain coatings exhibiting a photo-catalytic activity for the development of self-cleaning textiles. The particles synthesized using a sol-gel-approach where, amongst others, investigated by XRD to prove the existence of titania crystallized in the anatase structure. The photo-catalytic activity of the different particles as well of the coatings was compared by the decomposition of astrazone red induced by an irradiation with artificial and solar UV-radiation. With respect to the underlying aim of the investigation the durability of the effect against washing was tested by standardized washing experiments, showing promising results.  相似文献   

17.
A novel N-halamine precursor with tertiary amino group (5,5-dimethylhydantoinyl-3-ylethyl)-dimethylamine (DEADH), was synthesized and then covalently bonded onto cotton fabrics modified by 3-chloropropyltrimethoxysilane to form quaternarized N-halamine precursor grafted cotton fabrics which could be transferred to N-halamine structure upon exposure to dilute sodium hypochlorite solution. The grafted cotton fabrics were characterized by FT-IR, X-ray photoelectron spectroscopy, and field emission scanning electron microscope. The antimicrobial test showed that the cotton fabrics grafted with the quaternarized N-halamine were capable of 7-log inactivation of Staphylococcus aureus and Escherichia coli O157:H7 within 1 min of contact time. Very interestingly, it was found that the grafting process and following chlorination had almost no adverse effect on the tensile strength of cotton fabrics. Furthermore, the antimicrobial cotton fabrics exhibited good washing durability and stability.  相似文献   

18.
Wang  Pei  Zhang  MengYi  Qu  JieHao  Wang  LuJie  Geng  JunZhao  Fu  FeiYa  Liu  XiangDong 《Cellulose (London, England)》2022,29(6):3569-3581

Quaternary ammonium compounds (QACs) have outstanding antimicrobial effect, but covalent immobilization of plentiful QAC onto cotton fiber surface to realize a durable function remains a challenge. Herein, a quaternary ammonium monomer, [2-(methacryloyloxy) ethyl] trimethylammonium chloride (DMC) was co-polymerized with methyl acrylate (MA) to prepare an antibacterial copolymer, poly(DMC-co-MA). To graft the copolymer with an improved grafting efficiency, cotton fabric was treated using carboxymethyl chitosan (CMC) to establish an amino-functionalized fiber surface first. This treatment allows the amidation reactions between the amino groups and the pendant ester groups in the poly(DMC-co-MA) to take place, achieving a durable anionic polymer coating onto the fiber surfaces with remarkably antibacterial effect. Characterization results indicated that when DMC/MA monomer ratio was 100:1, the resulting copolymer endows the modified cotton fabric with antibacterial capability that inactivates all Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Even after 50 laundering cycles, more than 98.0% of the antibacterial rate could still be retained. Moreover, the wearing comfort properties such as softness, water absorption and air permeability of the finishing cotton fabrics have been insignificantly changed by comparing to the untreated cotton fabric.

  相似文献   

19.
The aim of this study was to investigate antimicrobial activity of textiles doped with silver in different forms. Three types of textiles were prepared and examined: textiles doped with commercially available Ag nanoparticles, textiles doped with commercial colloidal silver and textiles doped with silver silica SiO2/Ag spheres. The specimens of silica submicron spheres were synthesized by the sol–gel method as a matrix for biological active silver. The results of microbiological tests revealed that among three kinds of Ag doped textiles only these doped with SiO2/Ag spheres are bacteriostatically active. During the experiments minimal inhibiting bacteria growth concentration of active SiO2/Ag spheres added to textiles was determined.  相似文献   

20.
Silver nanoparticles (Ag NPs) are known to have efficient antimicrobial properties, but the direct application of Ag NPs onto the surface of textiles has shown to be ineffective and raise environmental concerns because Ag NPs leach out during washing. In this study, non-leaching and stable Ag-cotton nanocomposite fiber was produced by the in situ formation of Ag NPs inside the cotton fiber. The reported method is to introduce a nanofluidic system in alkali-swollen cotton fiber. Sequential flows of [Ag(NH3)2]+ and reductant aqueous fluids into the opened microfibrillar channels yielded a self-assembly of Ag ions on the deprotonated cellulose and subsequent nucleation and particle growth on the microfibrils. Transmission electron and field emission scanning electron microscopy images showed Ag NPs evenly dispersed throughout the entire cross-section of the fiber and their fixation onto the isolated secondary cell wall, respectively. Despite the rapid reduction reaction and the absence of a stabilizing agent, the successful formation of monodispersed Ag NPs (12 ± 3 nm) was attributed to the self-controlled function of the highly organized microfibrillar substructures, which regulated the transport and mixing of reactants. Incorporation of Ag NPs into the internal structure of the cotton fiber did not significantly influence the cotton crystalline structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号