首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The family of feasible methods for minimization with nonlinear constraints includes the nonlinear projected gradient method, the generalized reduced gradient method (GRG), and many variants of the sequential gradient restoration algorithm (SGRA). Generally speaking, a particular iteration of any of these methods proceeds in two phases. In the restoration phase, feasibility is restored by means of the resolution of an auxiliary nonlinear problem, generally a nonlinear system of equations. In the minimization phase, optimality is improved by means of the consideration of the objective function, or its Lagrangian, on the tangent subspace to the constraints. In this paper, minimal assumptions are stated on the restoration phase and the minimization phase that ensure that the resulting algorithm is globally convergent. The key point is the possibility of comparing two successive nonfeasible iterates by means of a suitable merit function that combines feasibility and optimality. The merit function allows one to work with a high degree of infeasibility at the first iterations of the algorithm. Global convergence is proved and a particular implementation of the model algorithm is described.  相似文献   

2.
In this work, we present an algorithm for solving constrained optimization problems that does not make explicit use of the objective function derivatives. The algorithm mixes an inexact restoration framework with filter techniques, where the forbidden regions can be given by the flat or slanting filter rule. Each iteration is decomposed into two independent phases: a feasibility phase which reduces an infeasibility measure without evaluations of the objective function, and an optimality phase which reduces the objective function value. As the derivatives of the objective function are not available, the optimality step is computed by derivative-free trust-region internal iterations. Any technique to construct the trust-region models can be used since the gradient of the model is a reasonable approximation of the gradient of the objective function at the current point. Assuming this and classical assumptions, we prove that the full steps are efficient in the sense that near a feasible nonstationary point, the decrease in the objective function is relatively large, ensuring the global convergence results of the algorithm. Numerical experiments show the effectiveness of the proposed method.  相似文献   

3.
A new iterative algorithm based on the inexact-restoration (IR) approach combined with the filter strategy to solve nonlinear constrained optimization problems is presented. The high level algorithm is suggested by Gonzaga et al. (SIAM J. Optim. 14:646–669, 2003) but not yet implement—the internal algorithms are not proposed. The filter, a new concept introduced by Fletcher and Leyffer (Math. Program. Ser. A 91:239–269, 2002), replaces the merit function avoiding the penalty parameter estimation and the difficulties related to the nondifferentiability. In the IR approach two independent phases are performed in each iteration, the feasibility and the optimality phases. The line search filter is combined with the first one phase to generate a “more feasible” point, and then it is used in the optimality phase to reach an “optimal” point. Numerical experiences with a collection of AMPL problems and a performance comparison with IPOPT are provided.   相似文献   

4.
1引言众所周知,罚函数法在最优化理论与数值计算中占据着极其重要的位置,作为求解约束优化问题的一类重要方法,在上世纪五、六十年代曾经历一次发展高潮.近十几年来,伴随着对数障碍函数法在内点法中取得的成功,罚函数法的研究又呈现出一个小高潮[2,3,4].在罚函数方法里,精确惩罚函数法有着非常吸引人的性质,即,当罚参数大于某个有限门槛值时,仅通过求解单个无约束罚问题便可得到原问题的最优解,从而省去了一般罚函数法解系列无约束优化问题的工作量.  相似文献   

5.
A new, infeasible QP-free algorithm for nonlinear constrained optimization problems is proposed. The algorithm is based on a continuously differentiable exact penalty function and on active-set strategy. After a finite number of iterations, the algorithm requires only the solution of two linear systems at each iteration. We prove that the algorithm is globally convergent toward the KKT points and that, if the second-order sufficiency condition and the strict complementarity condition hold, then the rate of convergence is superlinear or even quadratic. Moreover, we incorporate two automatic adjustment rules for the choice of the penalty parameter and make use of an approximated direction as derivative of the merit function so that only first-order derivatives of the objective and constraint functions are used.  相似文献   

6.
王福胜  张瑞 《计算数学》2018,40(1):49-62
针对带不等式约束的极大极小问题,借鉴一般约束优化问题的模松弛强次可行SQP算法思想,提出了求解不等式约束极大极小问题的一个新型模松弛强次可行SQCQP算法.首先,通过在QCQP子问题中选取合适的罚函数,保证了算法的可行性以及目标函数F(x)的下降性,同时简化QCQP子问题二次约束项参数α_k的选取,可保证算法的可行性和收敛性.其次,算法步长的选取合理简单.最后,在适当的假设条件下证明了算法具有全局收敛性及强收敛性.初步的数值试验结果表明算法是可行有效的.  相似文献   

7.
In this paper, a new sequential penalty algorithm, based on the Linfin exact penalty function, is proposed for a general nonlinear constrained optimization problem. The algorithm has the following characteristics: it can start from an arbitrary initial point; the feasibility of the subproblem is guaranteed; the penalty parameter is adjusted automatically; global convergence without any regularity assumption is proved. The update formula of the penalty parameter is new. It is proved that the algorithm proposed in this paper behaves equivalently to the standard SQP method after sufficiently many iterations. Hence, the local convergence results of the standard SQP method can be applied to this algorithm. Preliminary numerical experiments show the efficiency and stability of the algorithm.  相似文献   

8.
线性约束最优化问题的一族次可行方向法   总被引:1,自引:0,他引:1  
本文给出线性约束最优化问题的一族算法.方法具有如下特点:1)初始迭代点可以任意选取;2)一旦有某一个迭代点进入可行域,方法将成为一族可行方向法;3)算法避开不易处理的罚函数和罚参数.文中采用一种最优性控制函数将初始化阶段和最优化阶段有机地结合起来,正是这种技巧保证了算法的全局收敛性  相似文献   

9.
In this paper we present an algorithm for solving nonlinear programming problems where the objective function contains a possibly nonsmooth convex term. The algorithm successively solves direction finding subproblems which are quadratic programming problems constructed by exploiting the special feature of the objective function. An exact penalty function is used to determine a step-size, once a search direction thus obtained is judged to yield a sufficient reduction in the penalty function value. The penalty parameter is adjusted to a suitable value automatically. Under appropriate assumptions, the algorithm is shown to produce an approximate optimal solution to the problem with any desirable accuracy in a finite number of iterations.  相似文献   

10.
In this paper we propose a recursive quadratic programming algorithm for nonlinear programming problems with inequality constraints that uses as merit function a differentiable exact penalty function. The algorithm incorporates an automatic adjustment rule for the selection of the penalty parameter and makes use of an Armijo-type line search procedure that avoids the need to evaluate second order derivatives of the problem functions. We prove that the algorithm possesses global and superlinear convergence properties. Numerical results are reported.  相似文献   

11.
The paper proposes a primal-dual algorithm for solving an equality constrained minimization problem. The algorithm is a Newton-like method applied to a sequence of perturbed optimality systems that follow naturally from the quadratic penalty approach. This work is first motivated by the fact that a primal-dual formulation of the quadratic penalty provides a better framework than the standard primal form. This is highlighted by strong convergence properties proved under standard assumptions. In particular, it is shown that the usual requirement of solving the penalty problem with a precision of the same size as the perturbation parameter, can be replaced by a much less stringent criterion, while guaranteeing the superlinear convergence property. A second motivation is that the method provides an appropriate regularization for degenerate problems with a rank deficient Jacobian of constraints. The numerical experiments clearly bear this out. Another important feature of our algorithm is that the penalty parameter is allowed to vary during the inner iterations, while it is usually kept constant. This alleviates the numerical problem due to ill-conditioning of the quadratic penalty, leading to an improvement of the numerical performances.  相似文献   

12.
In this paper, we develop an exterior point algorithm for convex quadratic programming using a penalty function approach. Each iteration in the algorithm consists of a single Newton step followed by a reduction in the value of the penalty parameter. The points generated by the algorithm follow an exterior path that we define. Convergence of the algorithm is established. The proposed algorithm was motivated by the work of Al-Sultan and Murty on nearest point problems, a special quadratic program. A preliminary implementation of the algorithm produced encouraging results. In particular, the algorithm requires a small and almost constant number of iterations to solve the small to medium size problems tested.  相似文献   

13.
We propose an algorithm for the constrained continuous minimax problem. The algorithm uses a quasi-Newton search direction, based on subgradient information, conditional on maximizers. The initial problem is transformed to an equivalent equality constrained problem, where the logarithmic barrier function is used to ensure feasibility. In the case of multiple maximizers, the algorithm adopts semi-infinite programming iterations toward epiconvergence. Satisfaction of the equality constraints is ensured by an adaptive quadratic penalty function. The algorithm is augmented by a discrete minimax procedure to compute the semi-infinite programming steps and ensure overall progress when required by the adaptive penalty procedure. Progress toward the solution is maintained using merit functions.  相似文献   

14.
In a recent paper (Ref. 1), the author proposed a trust-region algorithm for solving the problem of minimizing a nonlinear function subject to a set of equality constraints. The main feature of the algorithm is that the penalty parameter in the merit function can be decreased whenever it is warranted. He studied the behavior of the penalty parameter and proved several global and local convergence results. One of these results is that there exists a subsequence of the iterates generated by the algorithm that converges to a point that satisfies the first-order necessary conditions.In the current paper, we show that, for this algorithm, there exists a subsequence of iterates that converges to a point that satisfies both the first-order and the second-order necessary conditions.This research was supported by the Rice University Center for Research on Parallel Computation, Grant R31853, and the REDI Foundation.  相似文献   

15.
In this paper a new continuously differentiable exact penalty function is introduced for the solution of nonlinear programming problems with compact feasible set. A distinguishing feature of the penalty function is that it is defined on a suitable bounded open set containing the feasible region and that it goes to infinity on the boundary of this set. This allows the construction of an implementable unconstrained minimization algorithm, whose global convergence towards Kuhn-Tucker points of the constrained problem can be established.  相似文献   

16.
This paper provides characterizations of the weakly minimal elements of vector optimization problems and the global minima of scalar optimization problems posed on locally convex spaces whose objective functions are deterministic while the uncertain constraints are treated under the robust (or risk-averse) approach, i.e. requiring the feasibility of the decisions to be taken for any possible scenario. To get these optimality conditions we provide Farkas-type results characterizing the inclusion of the robust feasible set into the solution set of some system involving the objective function and possibly uncertain parameters. In the particular case of scalar convex optimization problems, we characterize the optimality conditions in terms of the convexity and closedness of an associated set regarding a suitable point.  相似文献   

17.
针对可微非线性规划问题提出了一个新的逼近精确罚函数的罚函数形式,给出了近似逼近算法与渐进算法,并证明了近似算法所得序列若有聚点,则必为原问题最优解. 在较弱的假设条件下,证明了算法所得的极小点列有界,且其聚点均为原问题的最优解,并得到在Mangasarian-Fromovitz约束条件下,经过有限次迭代所得的极小点为可行点.  相似文献   

18.
Inexact Restoration methods have been introduced for solving nonlinear programming problems. Each iteration is composed of two phases. The first one reduces a measure of infeasibility, while in the second one the objective function value is reduced in a tangential approximation of the feasible set. The point obtained from the second phase is compared with the current point either by means of a merit function or by using a filter criterion. A comparative numerical study about these criteria by using a family of Hard-Spheres Problems is presented.  相似文献   

19.
In this paper, we propose a new penalty-free-type method for nonlinear equality constrained problems. The new algorithm uses trust region framework and feasibility safeguarding technique. Moreover, it has no choice of penalty parameter and penalty function as a merit function, and it does not use the filter technique to avoid the penalty function either. We analyze the global convergence of the main algorithm under the standard assumptions. The preliminary numerical tests are reported.  相似文献   

20.
A mathematical program with vanishing constraints (MPVC) is a constrained optimization problem arising in certain engineering applications. The feasible set has a complicated structure so that the most familiar constraint qualifications are usually violated. This, in turn, implies that standard penalty functions are typically non-exact for MPVCs. We therefore develop a new MPVC-tailored penalty function which is shown to be exact under reasonable assumptions. This new penalty function can then be used to derive (or recover) suitable optimality conditions for MPVCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号