首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molar excess volumes, VE, molar excess enthalpies, HE, and speeds of sound data, u, of pyrrolidin-2-one (i) + ethanol or propan-1-ol or propan-2-ol or butan-1-ol (j) binary mixtures have been determined over entire composition range at 308.15 K. The observed speeds of sound data have been utilized to predict excess isentropic compressibilities, of the investigated binary mixtures. The observed excess thermodynamic properties VE, HE and have been analyzed in terms of Graph theory. The analysis of VE data by the Graph theory suggests that pyrrolidin-2-one exists mainly as a mixture of cyclic and open dimer; ethanol as a mixture of dimer and trimer; butan-1-ol and propan-2-ol as mixture of monomer and dimer and propan-1-ol as a dimer in the pure state, and their mixtures contain 1:1 molecular complex. The IR studies lend additional credence to the nature and extent of interactions for the proposed molecular entities in the mixtures. Also, it has been observed that VE, HE and values predicted by the Graph theory compare well to with their corresponding experimental values.  相似文献   

2.
Molar excess volumes, VE, molar excess enthalpies, HE, and speeds of sound data, u, of chloroform (i) + aniline or o-toluidine (j) binary mixtures have been measured as a function of composition at 308.15 K. Isentropic compressibility changes of mixing, have been determined by employing speed of sound data. Topological investigations of VE data reveals that aniline, chloroform and o-toluidine are associated entities and these (i + j) mixtures contain a 1:1 molecular complex. The IR studies lend further support to the nature and extent of interaction for the proposed molecular entity in the mixtures. HE and values have also been calculated by employing Moelwyn-Huggins concept [Polymer 12 (1971) 387] taking topology of the constituents of the mixtures. It has been observed that calculated HE and values compare well with their corresponding experimental values. The observed VE, HE and data have also been analyzed in terms of Flory theory.  相似文献   

3.
Speeds of sound, uijk, of 1,3-dioxolane or 1,4-dioxane (i) + water (j) + formamide or dimethylformamide (k) ternary mixtures and of their binary subsystems, uij, of 1,3-dioxolane or 1,4-dioxane (i) + formamide or dimethylformamide (j), and water (i) + formamide or dimethylformamide (j) have been measured over the entire composition range at 308.15 K. The experimental data have been used to evaluate the excess isentropic compressibilities of binary (κsE)ij and ternary (κsE)ijk mixtures using their densities calculated from molar excess volume data. The Moelwyn-Huggins concept [M. L. Huggins, Polymer 12, 389 (1971)] of interaction between the surfaces of components of a binary mixture has been employed to evaluate the excess isentropic compressibilities (using the concept of connectivity parameter of third degree of a molecule, 3ξ, which in turn depends on its topology) of binary mixtures, and this method has been extended to predict excess compressibilities of ternary mixtures. Values of (κsE)ij and (κsE)ijk have also been calculated by the Flory theory. It was observed that (κsE)ij and (κsE)ijk predicted by the Moelwyn-Huggins approach compare well with calculated and experimental values.  相似文献   

4.
Molar excess volumes, VE, molar excess enthalpies, HE, and speeds of sound, u, of o-toluidine (i) + cyclohexane or n-hexane or n-heptane (j) binary mixtures have been determined over entire range of composition at 308.15 K. Speeds of sound data have been utilized to predict isentropic compressibility changes of mixing, of (i + j) mixtures. The observed VE, HE and data have been analyzed in terms of Graph theory. The analysis of VE data by Graph theory reveals that o-toluidine exists as an associated molecular entity and (i + j) mixtures contain 1:1 molecular complex. It has been observed that VE, HE and values calculated by Graph theory compare well with their corresponding experimental values. The observed data have also been analyzed in term of Flory theory.  相似文献   

5.
Molar excess volumes, VijkE, of 1,3-dioxolane or 1,4-dioxane (i) + water (j) + propan-1-ol or + propan-2-ol (k) ternary mixtures have been determined dilatometrically over the entire composition range at 308.15 K. The resulting data have been analyzed in terms of (1) the graph theoretical approach (which involves the topology of the mixture constituents), (2) the Sanchez and Locombe theory and (3) the Flory theory. It was observed that VijkEvalues predicted by the graph theory compare reasonably well with their corresponding experimental values. However, although VijkE values calculated by the Sanchez and Lacombe and Flory theories are of same sign and magnitude, the qualitative agreement is poor.  相似文献   

6.
Speed of sound data, uijk, of 1,3-dioxolane or 1,4-dioxane(i) + water(j) + propan-1-ol or propan-2-ol(k) ternary mixtures and their sub-binary mixtures, uij, of 1,3-dioxolane or 1,4-dioxane(i) + water or propan-1-ol or propan-2-ol(j) and water(i) + propan-1-ol or propan-2-ol(j) mixtures have been measured over the entire composition range at 308.15 K. Isentropic compressibility changes of mixing, (κsE)ij and (κsE) ijk, for the binary and ternary mixtures have been determined by employing the observed speeds of sound data and densities (calculated from their molar excess volumes data). The (κsE) ij and (κsE) ijk values have also been predicated by the graph theoretical approach and the Flory theory. It has been observed that (κsE) ij and (κsE) ijk predicted by the graph theoretical approach compare well with their corresponding experimental values.  相似文献   

7.
Excess molar volumes, VijkEV_{ijk}^{E}, are reported for ternary mixtures of tetrahydropyran (i)+benzene (j)+toluene or o- or p-xylenes (k) and tetrahydropyran (i)+toluene (j)+o- or p-xylenes (k) as a function of composition at 308.15 K. These VijkEV_{ijk}^{E} values have been fitted to the Redlich–Kister equation to predict ternary adjustable parameters and standard deviations. The measured VijkEV_{ijk}^{E} data have been analyzed in terms of Graph theory (which involves the topology of the constituents of mixtures). It has been observed that VijkEV_{ijk}^{E} values predicted by Graph theory compare well with their corresponding experimental values.  相似文献   

8.
Densities (ρ), viscosities (η) and speeds of sound (u) of the ternary mixture (1-heptanol + tetrachloroethylene + methylcyclohexane) and the corresponding binary mixtures (1-heptanol + tetrachloroethylene), (1-heptanol + methylcyclohexane) and (tetrachloroethylene + methylcyclohexane) at 298.15 K were measured over the whole composition range. The data obtained are used to calculate the excess molar volumes (V E), excess isobaric thermal expansivities (α E), viscosity deviations (Δη), excess Gibbs energies of activation of viscous flow (ΔG *E) and excess isentropic compressibilities (κ S E) of the binary and ternary mixtures. The data from the binary systems were fitted by the Redlich–Kister equation whereas the best correlation method for the ternary system was found using the Nagata equation. Viscosities, speeds of sound and isentropic compressibilities of the binary and ternary mixtures have been correlated by means of several empirical and semi-empirical equations. The best correlation method for viscosities of binary systems is found using the Iulan et al. equation and for the ternary system using the Heric and McAllister equations. The best correlation method for the speeds of sound and isentropic compressibilities of the binary system (1-heptanol + methylcyclohexane) is found using IMR (Van Deal ideal mixing relation) and for the binary system (tetrachloroethylene + methylcyclohexane) it is found using the NR (Nomoto relation) and for the binary system (1-heptanol + tetrachloroethylene) and the ternary system (1-heptanol + trichloroethylene + methylcyclohexane) it is obtained from the FLT (Jacobson free length theory).  相似文献   

9.
Molar excess volumes VEijk of methylenebromide i + pyridine j + β-picoline (k, cyclohexane (i) + pyridine (j) + β-picoline(K), benzene(i)+toluene(j)+1,2-dichloroethane(k), benzene(i) + 0-xylene(j) + 1,2-dichloroethane(k) and benzene(i) + p-xylene(j) + 1,2-dichloroethane(k) mixtures have been determined dilatometrically at 298.15 K. The data have been examined in terms of Sanchez and Lacombe theory and the graph-theoretical approach, and it is found that they are described well by the latter. Self- and cross-volume interaction coefficients Vjk, Vjjk and Vjkk, etc., have also been evaluated and the values utilised to study molecular interactions between the jth and kth molecular species in the presence of the ith in these i + j + k mixtures.  相似文献   

10.
Molar excess volumes, VijkE, of 1,3-dioxolane or 1,4-dioxane (i) + water (j) + formamide or dimethylformamide (k) ternary mixtures have been determined dilatometrically over the entire composition range at 308.15 K. The measured data have been analyzed in terms of (a) the graph theoretical approach, (b) the Lacombe and Sanchez theory, and (c) the Flory theory. It was observed that VijkE values predicted by graph theory compare well with their corresponding experimental values. However, VijkE values evaluated by the Lacombe and Sanchez as well as the Flory theory are of same sign and order.  相似文献   

11.
Molar excess enthalpies, HEijk(T1, xi, xj), for methylenebromide (i)+pyridine (j)+β-picoline (k); pyridine (i)+β-picoline (j)+cyclohexane (k); benzene (i)+toluene (j)+1,2-dichloroethane (k); benzene (i)+o-xylene (j)+1,2-dichloroethane (k); and benzene (i)+p-xylene (j)+1,2-dichloroethane (k) mixtures have been measured calorimetrically as a function of temperature and composition. The data have been analysed in terms of the Sanchez and Lacombe theory and using an approach employing the “graph theoretical” concept of connectivity parameters to characterize its pure components. It has been observed that the HEijk (T, xi, xj) data calculated from the “graph theoretical” approach using 3ξ values based on δv considerations (that take into consideration the valency of individual atoms of the molecular graph constituent components) best reproduces the corresponding experimental HEijk data.  相似文献   

12.
Liquid–liquid equilibria of systems water (A) + CiEj surfactant (B) + n-alkane (C) have been modeled by a mass-action law model previously developed and so far successfully applied to a series of binary water + CiEj systems and to the ternary system water + C4E1 + n-dodecane. These calculations provide the basis for the presented modeling. The aqueous systems give information about the association constants and the χAB-parameter of the Flory–Huggins theory and the ternary C4E1-system provides universal temperature functions for the χAC- and the χBC-parameter. The three-phase equilibrium for seven ternary CiEj systems (i = 6–12, j = 3–6) has been calculated by fitting one additional parameter for each of both temperature functions to the characteristic “fish-tail” point. The agreement with the experimental data is reasonably well. For systems with very small three-phase areas the results can considerably be improved by individual temperature functions that incorporate the experimental temperature maximum of the “fish” into the parameter fit. Based on the parameters of the system water + C8E4 + n-C8H18 the “fish-shaped” phase diagram of the system water + C8E4 + n-C14H30 was predicted reasonably well.  相似文献   

13.
The equilibria AuCl4+jOH+kH2OAuCl4−jk (OH) j (H2O) k k−1+(j+k)Cl, β jk (0≤j,k≤4) have been studied spectrophotometrically at 20 °C in aqueous solution. For I=2 mol⋅dm−3(HClO4) the conventional constants, β i *, of the equilibria, Au*+iCl AuCl i *, are equal to log 10 β 1*=(6.98±0.08); log 10 β 2*=(13.42±0.05); log 10 β 3*=(19.19±0.09); and log 10 β 4*=(24.49±0.07), where [AuCl i *]=∑[AuCl i (OH) j (H2O)4−ij ] at i=const. The hydrolysis and other transformations of AuCl4 in aqueous solution are discussed. On the basis of new and known data, a full set of equilibrium constants, β jk , or their estimates has been obtained.  相似文献   

14.
Excess molar volumes V E and excess molar heat capacities C P E at constant pressure have been measured, at 25°C, as a function of composition for the four binary liquid mixtures propylene carbonate (4-methyl-1,3-dioxolan-2-one, C4H6O3; PC) + benzene (C6H6;B), + toluene (C6H5CH3;T), + ethylbenzene (C6H5C2H5;EB), and + p-xylene (p-C6H4(CH3)2;p-X) using a vibrating-tube densimeter and a Picker flow microcalorimeter, respectively. All the excess volumes are negative and noticeably skewed towards the hydrocarbon side: V E (cm3-mol–1) at the minimum ranges from about –0.31 at x1=0.43 for {x1C4H6O3+x2p-C6H4(CH3)2}, to –0.45 at x1=0.40 for {x1C4H6O3+x2C6H5CH3}. For the systems (PC+T), (PC+EB) and (PC+p-X) the C P E s are all positive and even more skewed. For instance, for (PC+T) the maximum is at x 1,max =0.31 with C P,max E =1.91 J-K–1-mol–1. Most interestingly, C P E of {x1C4H6O3+x2C6H6} exhibits two maxima near the ends of the composition range and a minimum at x 1,min =0.71 with C P,min E =–0.23 J-K–1-mol–1. For this type of mixture, it is the first reported case of an M-shaped composition dependence of the excess molar heat capacity at constant pressure.Communicated at the Festsymposium celebrating Dr. Henry V. Kehiaian's 60th birthday, Clermont-Ferrand, France, 17–18 May 1990.  相似文献   

15.
We have determined the parameters of the Arrhenius equation (E, log A) for reactions between \textNO2+ {\text{NO}}_2^{+} ions and C3-C8 alkanes in HNO3–93 wt.% H2SO4 solutions at 277–353 K, and we have also estimated the activation parameters E j , log A j for secondary and tertiary C—H bonds of these alkanes. We show that the following compensation relations are satisfied: E = 2.3R βlog A + C with isokinetic temperature β = 360 ± 65 K, and also E j =2.3Rβ j log A j  + C j , for secondary C—H bonds, β2 =300 ± 60, and for tertiary C—H bonds, β3 =310 ± 50.  相似文献   

16.
Densities (ρ), speeds of sound (u), and isentropic compressibilities (k S) of binary mixtures of dimethyl sulfoxide (DMSO) with water, methanol, ethanol, 1-propanol, 2-propanol, acetone and cyclohexanone have been measured over the entire composition range at 293.15 and 313.15 K. The excess molar volumes (V E), the deviations in speed of sound (u E) and the deviations in isentropic compressibility (k S E) have been determined. The V E, u E and k S E values were fitted by the Redlich-Kister polynomial equation and the A k coefficients as well as the standard deviations (d) between the calculated and experimental values have been derived. The results obtained are discussed from the viewpoint of the existence of interactions between the components of the binary mixtures.  相似文献   

17.
Excess molar enthalpies, H E, for the binary mixtures {p-xylene+(1–x) octane}, {x p-xylene+(1–x) diethyl carbonate}, {x octane+(1–x) diethyl carbonate} and the corresponding ternary system {x 1 p-xylene+x 2 octane+(1–x 1x 2) diethyl carbonate} have been measured by using a Calvet microcalorimeter at 298.15 K under atmospheric pressure. The experimental H E values are all positive for the binary and ternary mixtures over the entire composition range.  相似文献   

18.
Excess molar enthalpies of the ternary system {x 1 p-xylene+x 2decane+(1–x 1x 2)diethyl carbonate} and the involved binary mixtures {p-xylene+(1–x)decane}, {xp-xylene+(1–x)diethyl carbonate} and {xdecane+(1–x)diethyl carbonate} have been determined at the temperature of 298.15 K and atmospheric pressure, over the whole composition range, using a Calvet microcalorimeter. The experimental excess molar enthalpies H m E are positive for all the binary systems studied over the whole composition range. Excess molar enthalpy for the ternary system is positive as well, showing maximum values at x 1=0, x 2=0.4920, x 3=0.5080, H m,123 E=1524 J mol–1.  相似文献   

19.
Chromium(III)-carbonate reactions are expected to be important in managing high-level radioactive wastes. Extensive studies on the solubility of amorphous Cr(III) hydroxide solid in a wide range of pH (3–13) at two different fixed partial pressures of CO2(g) (0.003 or 0.03 atm.), and as functions of K2CO3 concentrations (0.01 to 5.8 mol⋅kg−1) in the presence of 0.01 mol⋅dm−3 KOH and KHCO3 concentrations (0.001 to 0.826 mol⋅kg−1) at room temperature (22±2 °C) were carried out to obtain reliable thermodynamic data for important Cr(III)-carbonate reactions. A combination of techniques (XRD, XANES, EXAFS, UV-Vis-NIR spectroscopy, thermodynamic analyses of solubility data, and quantum mechanical calculations) was used to characterize the solid and aqueous species. The Pitzer ion-interaction approach was used to interpret the solubility data. Only two aqueous species [Cr(OH)(CO3)22− and Cr(OH)4CO33−] are required to explain Cr(III)-carbonate reactions in a wide range of pH, CO2(g) partial pressures, and bicarbonate and carbonate concentrations. Calculations based on density functional theory support the existence of these species. The log 10 K° values of reactions involving these species [{Cr(OH)3(am) + 2CO2(g)Cr(OH)(CO3)22−+2H+} and {Cr(OH)3(am) + OH+CO32− Cr(OH)4CO33−}] were found to be −(19.07±0.41) and −(4.19±0.19), respectively. No other data on any Cr(III)-carbonato complexes are available for comparisons.  相似文献   

20.
The density of five (0.02297, 0.08317, 0.26147, 0.49343, 0.75255 mole fraction BMIMPF6) binary methanol + BMIMPF6 (1-n-butyl-3-methylimidazolium hexafluorophospate) mixtures have been measured with a vibrating-tube densimeter. Measurements were performed at temperatures from 298 to 398 K and at pressures up to 40 MPa. The total uncertainties of the density, temperature, pressure, and concentration (mole fractions) measurements were estimated to be less than 0.1 kg⋅m−3, 15 mK, 5 kPa, and 10−4, respectively. The uncertainties reported in this paper are expanded uncertainties at the 95% confidence level with a coverage factor of k=2. The measured densities were used to study of the effect of temperature, pressure, and concentration on the derived volumetric properties such as excess, apparent and partial molar volumes. It is shown that the values of excess molar volume for methanol + BMIMPF6 mixtures are negative at all measured temperatures and pressures in the whole concentration range. The measured densities were used to develop Tait-type equations of state for pure components and the mixtures. The structural properties such as direct and total correlation function integrals were calculated using the derived partial molar volumes at infinite dilution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号