首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the first results obtained by proton (1H) nuclear magnetic relaxation studies of molecular dynamics in a supermolecular liquid-crystal dendrimer exhibiting columnar rectangular and smectic-A phases. The 1H spin-lattice relaxation time (T1) dispersions are interpreted using two relaxation mechanisms associated with collective motions and local molecular reorientations of the dendritic segments in the low- and high-frequency ranges, respectively. The T1 values show a drop around 2.3 MHz that is attributed to a contribution coming from cross-relaxation between 1H and nitrogen nuclear spins. In the high-frequency range the motions appear to be of similar nature in both mesophases and are ascribed to reorientations of dendritic segments (belonging to the core and/or to the mesogenic units) characterized by two correlation times. Notable differences in the dynamics between the columnar and layered phases are observed in the low-frequency range. Depending on the mesophase they are discussed in terms of elastic deformations of the columns and layer undulations. In this study we find that the dendritic core influences the dynamics of the mesogenic units both for local and collective motions. These results can be understood in terms of spatial constraints imposed by the dendritic architecture and by the supermolecular arrangement in the mesophases.  相似文献   

2.
We used proton ( 1H nuclear magnetic relaxation (NMR) dispersions to study the molecular dynamics in the isotropic phase and mesophases (nematic and columnar hexagonal) of a supermesogenic octapode formed by laterally connecting calamitic mesogens to an inorganic silsesquioxane cube through flexible spacers. The dispersions of the spin-lattice relaxation time (T1) are interpreted through relaxation mechanisms used for the study of molecular dynamics in low-molar-mass liquid crystals but adapted to the case of liquid crystalline supermolecules. At high frequencies (above 10MHz) the behaviour of the T1 with the Larmor frequency is similar for all phases and is ascribed to local reorientations and/or rotations. At intermediate and low frequencies (below 10MHz) our results show notable differences in the T1 behaviour with respect to the mesophases. The nematic (N) and isotropic (Iso) phases’ low-frequency results are similar and are interpreted for both phases in terms of order director fluctuations (ODF), revealing that even in the isotropic phase local nematic order is detected by proton NMR relaxometry. Local nematic order in the Iso phase is interpreted in terms of the presence of nematic cybotactic clusters induced by the interdigitation of mesogens that is promoted by the silsesquioxane octapode molecular structure. In the columnar hexagonal (Col h phase, the T1 dispersions show that elastic columnar deformations (ECD) dominate the nuclear magnetic relaxation below 10MHz. This result shows that the columnar packing of the octapode clearly restricts the collective fluctuations of the mesogenic units inspite of their local nematic order.  相似文献   

3.
Using proton NMR relaxometry in the kilohertz frequency range, we study dynamics of 5CB liquid crystal molecules dispersed in the form of spherical microdroplets in a PDLC material. The focus of the study is the spin-lattice relaxation in the rotating frame, T1rho(-1), measured above the nematic-isotropic transition TNI. We show that the relaxation rate T1rho(-1)--when induced by uniform molecular translational diffusion in a spherical cavity--depends on the strength of the rotating magnetic field as T1rho(-1) proportional to omega1(-alpha) where alpha varies between 0.7 and 1, depending on the thickness of the ordered surface layer. This relaxation mechanism governs mainly the transverse spin relaxation, whereas the measurements of the frequency and temperature dependence of T1rho(-1) indicate a strong effect of slowing-down of molecular translational diffusion in contact with the polymer surface and yield the average dwell-time of molecules at the surface of the order 10(-5) s.  相似文献   

4.
A T1 minimum at 216 K for Larmor frequency 90 MHz has been detected and for this minimum no analogous T, minimum according to the known quadratic dependence of the Larmor frequency 25 MHz is found. The analysis leads to the conclusion that this T1 minimum is a result of the relaxation of protons via quadrupole nuclei. The Kimmich theoretical treatment of 1H NMR experiments exhibiting the existence of this phenomenon in the case of relaxation of protons of piridinium cations in (C5H5NH)5Bi2Br11 and the estimated averaged quadrupole frequency of interacting quadrupole nuclei has been estimated to be around 71 MHz. Below the phase transition at 118 K a wide symmetric spin-lattice relaxation minimum at 25 MHz is detected and a model of small angle libration of the pyridinium cation has been applied to explain the observed T1 relaxation time minimum.  相似文献   

5.
The molecular dynamics of poly(L-lactide) (PLLA) biopolymer was characterized through analyses of 1H and 2H NMR line-shapes and spin-lattice relaxation times at different temperatures. At low temperatures (e.g. 90 K), the methyl group rotation is dominant leading to a significant reduction in the proton second moment. Fast methyl group reorientation occurs at ca. 130 K. In additional to the fast methyl group rotation, hydroxyl groups start to reorient as the temperature increases further, eventually leading to the breakdown of the segments of the biopolymer chains above its glass transition temperature Tg of 323 K. The analyses of the 2H NMR line-shapes indicate that both the methyl and hydroxyl reorientations can be described by the so-called cone model, in which the former has three equilibrium positions with theta(C-D) = 70.5 degrees and phi = 120 degrees while the latter one exhibits two equilibrium positions with theta(O-D) = 78 degrees and phi = 180 degrees .  相似文献   

6.
The temperature dependencies of the 1H spin-lattice relaxation times T1 and of the proton NMR second moment M2 in the temperature range from about 90 to 420 K were measured for methyl cellulose, hydroxypropyl cellulose and hydroxypropyl methyl cellulose. The proton spin-lattice relaxation measurements reveal two minima due to the C3 reorientation of the methyl groups of the methoxy, methylenemethoxy or propylene oxide groups and the restricted motion of the segment of the polymer chain. The activation energy barriers for these motions were calculated.  相似文献   

7.
1,2-聚丁二烯13C-NMR弛豫的立体化学依赖性   总被引:1,自引:0,他引:1  
本工作用200MHz脉冲付利叶变换NMR波谱仪测定了一系列1,2-链节立体构型不同的1,2-聚丁二烯样品的13C自旋-晶格弛豫时间T1和核Overhauser效应NOE值,并用Cole-Cole、Fuoss-KirK wood经验相关时间分布模型和构象跳跃、阻尼取向扩散分子模型对nT1和NOE值进行了电子计算机拟合。利用所得数据讨论了1,2-聚了二烯13C-NMR弛豫的立体化学依赖性。  相似文献   

8.
1H NMR spin-lattice relaxation time measurements have been carried out in [(CH3)4N]2SeO4 in the temperature range 389-6.6 K to understand the possible phase transitions, internal motions and quantum rotational tunneling. A broad T1 minimum observed around 280 K is attributed to the simultaneous motions of CH3 and (CH3)4N groups. Magnetization recovery is found to be stretched exponential below 72 K with varying stretched exponent. Low-temperature T1 behavior is interpreted in terms of methyl groups undergoing quantum rotational tunneling.  相似文献   

9.
Proton nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation rates for the solid solution α-MnH0.06 have been measured over the temperature range 11-297 K and the resonance frequency range 20-90 MHz. A considerable shift and broadening of the proton NMR line and a sharp peak of the spin-lattice relaxation rate are observed near 130 K. These effects are attributed to the onset of antiferromagnetic ordering below the Néel temperature TN≈130 K. The proton NMR line does not disappear in the antiferromagnetic phase; this suggests a small magnitude of the local magnetic fields at H-sites in α-MnH0.06. The spin-lattice relaxation rate in the paramagnetic phase is dominated by the effects of spin fluctuations.  相似文献   

10.
《Solid State Ionics》2006,177(37-38):3223-3231
Proton dynamics in (NH4)3H(SO4)2 has been studied by means of 1H solid-state NMR. The 1H magic-angle-spinning (MAS) NMR spectra were traced at room temperature (RT) and at Larmor frequency of 400.13 MHz. 1H static NMR spectra were measured at 200.13 MHz in the range of 135–490 K. 1H spin-lattice relaxation times, T1, were measured at 200.13 and 19.65 MHz in the ranges of 135–490 and 153–456 K, respectively. The 1H chemical shift for the acidic proton (14.7 ppm) indicates strong hydrogen bonds. In phase III, NH4+ reorientation takes place; one type of NH4+ ions reorients with an activation energy (Ea) of 14 kJ mol 1 and the inverse of a frequency factor (τ0) of 0.85 × 10 14 s. In phase II, a very fast local and anisotropic motion of the acidic protons takes place. NH4+ ions start to diffuse translationally, and no proton exchange is observed between NH4+ ions and the acidic protons. In phase I, both NH4+ ions and the acidic protons diffuse translationally. The acidic protons diffuse with parameters of Ea = 27 kJ mol 1 and τ0 = 4.2 × 10 13 s. The translational diffusion of the acidic protons is responsible for the macroscopic proton conductivity, as the NH4+ translational diffusion is slow and proton exchange between NH4+ ions and the acidic protons is negligible.  相似文献   

11.
Proton magnetic spin-lattice relaxation in the effective field H2 acting in the doubly rotating frame (DRF) was first applied to the study of slow internal protein dynamics in the submillisecond range of correlation times in the solid state. In this method the local dipolar magnetic field is reduced by the magic-angle rotating-frame method so that the resonance frequency of the relaxation experiment may be set below the value of the local field. As a result, unachievable by the standard nuclear magnetic resonance (NMR) relaxation techniques, slow molecular motions become experimentally accessible. The second effective field H2 is produced by the shallow sine-wave phase modulation of the H1 pulse. The registration of the DRF spin-lattice relaxation signal takes place directly during the continuous H1 pulse by means of an additional low-frequency radio-frequency coil oriented along the H0 field and operating at the rotating-frame NMR frequency of 100 kHz. The measurements of the spin-lattice relaxation time in the DRF within a wide temperature range have been performed in dry and hydrated α-crystallin powders. This is the major protein in the eye lens, which prevents the uncontrolled aggregation of proteins and keeps the lens transparent. The results demonstrate that the protein hydration does not change the amplitude of slow side-chain motions but significantly shortens its correlation time: from about 50 to about 0.5 μs in dry and hydrated samples, respectively. The hydration also decreases the activation energy and restricts the distribution of the correlation times.  相似文献   

12.
The proton spin-lattice relaxation time T1, in the nematic liquid crystal 4-pentyl-4′-cyanobiphenyl confined in a glassy porous matrix has been measured in a wide Larmor frequency range of 1 · 102?2 · 107 Hz employing the fast field-cycling NMR technique. A strong influence of the restricted geometry on the character of the T1 dispersion was found. Our investigation clearly demonstrates the importance of the translationally induced molecular reorientations in inhomogeneous director field for the relaxation in the samples with 200 and 80 nm mean pore size. The experimental results are in a good agreement with the theoretical predictions. In the sample with 7 nm pore size the main contribution to the relaxation is ascribed to the slowing down of the molecular motion in the near-surface layer. Zero-field 1H NMR spectra of a microconfined liquid crystal are reported for the first time.  相似文献   

13.
1H and 19F spin-lattice relaxation times in polycrystalline diammonium hexafluorozirconate have been measured in the temperature range of 10–400 K to elucidate the molecular motion of both cation and anion. Interesting features such as translational diffusion at higher temperatures, molecular reorientational motion of both cation and anion groups at intermediate temperatures and quantum rotational tunneling of the ammonium group at lower temperatures have been observed. Nuclear magnetic resonance (NMR) relaxation time results correlate well with the NMR second moment and conductivity studies reported earlier.  相似文献   

14.
(CH(3))(4)NPF(6) is studied by NMR measurements to understand the internal motions and cross relaxation mechanism between the heterogeneous nuclei. The spin lattice relaxation times (T(1)) are measured for (1)H and (19)F nuclei, at three (11.4, 16.1 and 21.34 MHz) Larmor frequencies in the temperature range 350-50K and (1)H NMR second moment measurements at 7 MHz in the temperature range 300-100K employing home made pulsed and wide-line NMR spectrometers. (1)H NMR results are attributed to the simultaneous reorientations of both methyl and tetramethylammonium groups and motional parameters are evaluated. (19)F NMR results are attributed to cross relaxation between proton and fluorine and motional parameters for the PF(6) group reorientation are evaluated.  相似文献   

15.
It is shown that hydrodynamic flow has an effect on spin-lattice relaxation in water filled into a porous monolithic silica material. This is a rotational analogue of translational hydrodynamic (or Taylor-Aris) dispersion arising from incoherent Brownian motion in combination with coherent flow. The effect is demonstrated with the aid of field-cycling NMR relaxometry and confirmed by theoretical considerations. The results directly verify bulk mediated surface diffusion and reveal interfacial slip at fluid-solid interfaces.  相似文献   

16.
基于NMR自旋弛豫技术的蛋白质动力学研究   总被引:1,自引:1,他引:0  
文祎  林东海 《波谱学杂志》2012,29(2):288-306
蛋白质的三维结构在很多情况下不能很好地解释其在生理过程中的作用机制. 动力学研究能够获悉蛋白质在不同时间尺度下的内运动信息,建立起动态结构和生物功能的联系. 该文综述了通过NMR自旋弛豫技术研究蛋白质动力学的原理和方法:ps~ns的快运动分析主要采用约化谱密度函数映射和Modelfree方法;μs~ms的慢运动涉及化学/构象交换过程,常借助CPMG和R弛豫色散手段. 基于NMR的蛋白质动力学研究,将蛋白质科学从三维空间结构推进到四维时空结构的新层面.  相似文献   

17.
《Solid State Ionics》1988,26(3):209-215
1H NMR spin-lattice relaxation times, T1 (Zeeman) and T (rotating frame) and spin-spin relaxation times, T2, and 31P NMR solid-echoes are reported for phase I and II of hydrogen uranyl phosphate tetrahydrate (HUP) at temperatures in the range 200–323 K. The spectral density functions extracted from the measured relaxation times for phases I and II are consistent with a 2D diffusion mechanism for hydrogen motion. 31P second moments determined from the solid-echoes show that all the hydrogens diffuse rapidly in phase I, and that the hydrogen-bond site nearest to the phosphate oxygen is not occupied in phase II. The mechanism for diffusion in phase II is discussed.  相似文献   

18.
The chain dynamics in methyl cellulose (MC), hydroxypropylmethyl cellulose (HPMC) and hydroxypropyl cellulose (HPC) were studied with the aid of field-cycling NMR relaxometry technique in the temperature range from 300 to 480 K that is above the glass transition, but below thermal degradation. The frequency dependence of proton spin-lattice relaxation time was determined between 24 kHz and 40 MHz for selected temperatures. The experimental spin-lattice relaxation dispersion data were fitted with the power law relations of T(1) proportional variant omega(gamma) predicted by the tube/reptation model. The exponent's values found from the fitting procedure for MC, HPMC and HPC almost exactly match the ones predicted in tube/reptation model for limit II (gamma=0.75) and in MC also for limit III (gamma=0.50). Remarkably, this finding concerns the polymers in networks formed of the same polymer species.  相似文献   

19.
Linear polyethylene oxides with molecular weightsM w of 1665 and 10170 confined in pores with variable diameters in a solid methacrylate matrix were studied by proton field-cycling nuclear magnetic resonance relaxometry. The pore diameter was varied in the range of 9–57 nm. In all cases, the spin-lattice relaxation time shows a frequency dependence close toT 1∞ v3/4 in the range ofv=3·10?1-2·101 MHz as predicted by the tube-reptation model. This protonT 1 dispersion essentially reproduces that found in a previous deuteron study (R. Kimmich, R.-O. Seitter, U. Beginn, M. Möller, N. Fatkullin: Chem. Phys. Lett. 307, 147, 1999). As a feature particularly characteristic for reptation, this finding suggests that reptation is the dominating chain dynamics mechanism under pore confinement in the corresponding time range. The absolute values of the spin-lattice relaxation times indicate that the diameter of the effective tubes in which reptation occurs is much smaller than the pore diameters on the time scale of spin-lattice relaxation experimens. An estimation leads to a valued *~0.5 nm. The impenetrability of the solid pore walls, the uncrossability of polymer chains (“excluded volume”) and the low value of the compressibility in polymer melts create the “corset effect” which reduces the lateral motions of polymer chains to a microscopic scale of only a few tenths of a nanometer.  相似文献   

20.
The dependence of the 1H spin-lattice relaxation time on the magnetic field strength has been determined for linear and cross-linked polyisoprene for Larmor frequencies between 5 kHz and 20 MHz. Universal power-law relations are found for all temperatures and cross-link densities under investigation and are compared to published results of rotating-frame experiments on similar natural rubber samples. The shape of the individual dispersion functions can be superposed into a master curve using appropriate shift factors. While addition of filler particles even at large weight fractions has only a minor effect on the relaxation times, uniaxial deformation and swelling are demonstrated to alter the molecular dynamics significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号