首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
现有的以石墨为负极的锂离子电池能量密度逐渐接近其理论极限. 基于合金化反应机制的高容量含锂负极材料LixMy(M为能够和锂发生合金化反应的元素)是一类新兴的负极材料, 具有数倍于石墨的储锂比容量, 且可以为电池提供活性锂源. 这些特性使其能够与高容量无锂正极材料(如S, O2, FeF3和V2O5等)相匹配, 构建下一代高比能锂离子电池新体系. 本文综述了近年来高容量合金基含锂负极材料(如LixSi, LixSn, Li3P和LixAl基系列材料)的研究进展, 分析了所面临的挑战, 概述了材料的合成与电极的制备方法, 并介绍了它们在常规锂离子电池、 锂离子-硫电池及锂离子-空气电池等多个全电池体系中的应用实例, 提出并举证了其电化学性能优化与调控的策略, 最后展望了未来的研究方向.  相似文献   

2.
粘结剂是制备电极必须使用的重要材料之一,其选择和使用显著影响电极的宏观电化学性能,其优化是制造高性能锂离子电池电极片必须考虑的重要因素。本文探讨了粘结剂在电极电化学过程中的作用机制,阐述了不同锂离子电池电极粘结剂的特征和优缺点,分析了锂离子电池电极粘结剂的未来发展方向。  相似文献   

3.
刘超群  乔秀丽  迟彩霞 《化学通报》2022,85(11):1290-1296
Fe2O3锂离子电池负极材料因其具有的高能量密度而备受关注。但Fe2O3电极材料存在的如低导电性、充/放电过程中体积改变导致的循环稳定性差等问题限制其实际应用。介绍了高比表面积、结构稳定以及储锂动力学等因素对锂离子电池负极材料电化学性能的重要影响,综述电极活性材料纳米化、形貌控制和杂原子掺杂对Fe2O3负极材料电化学性能改善的相关研究进展,最后对Fe2O3电极材料的发展前景进行了展望。  相似文献   

4.
锡基复合氧化物的高能球磨法制备及其电化学性能   总被引:7,自引:0,他引:7  
随着锂离子电池的发展,人们越来越多地要求可充锂离子电池电极材料具有更高的容量.许多研究小组正致力于寻找和开发能够取代现有碳材料(理论最大比容量为372 mAh·g-1)的新型负极材料[1].锡氧化物基材料由于其高的储锂容量和低的锂离子脱嵌平台电压倍受人们关注,有望作为新一代锂离子电池负极材料[2~5].通过在线X-射线研究,Courtney等[4,5]提出了这类材料作为锂离子电池负极材料的两步反应机理:在首次放电过程中,锡氧化物被不可逆地还原成金属锡,同时生成氧化锂;随后,金属锡与锂发生可逆的合金化与去合金化反应,用反应式表示如下:  相似文献   

5.
开发新型高能量密度以及低成本的锂离子电池, 是有效应对能源危机和环境挑战的可行路径之一. 锂离子电池材料的电子结构与电子态的演化决定了材料诸多本征性质以及电池综合性能. 探测并操控电极材料电子态的演化对探求电极反应的物理机理、 促进电池材料发展具有重要意义. 基于同步辐射的软X射线光谱技术可以直接探测费米能级附近的电子态. 本文从阴阳离子氧化还原反应的不同角度对利用软X射线光谱对电子态演变的研究进行了总结, 获得了电极材料电化学循环过程中过渡金属与氧的电子态演化信息, 系统阐述并总结了不同锂离子电池材料中电子态的演化以及氧化还原反应机理的最新研究进展.  相似文献   

6.
商业化锂离子电池石墨负极和锂盐过渡金属氧化物正极材料的储锂容量都已接近各自的理论值,探索下一代高能量密度电极材料是解决现阶段锂离子电池容量限制的关键。近年来,新型金属草酸基负极材料,借助其在金属离子电池中多元化储能机制诱发的较高储能效应在碱金属离子电池绿色储能材料领域备受关注。本文就金属草酸基材料在锂、钠、钾金属离子电池方面的最新研究进行了综述,着重介绍了材料的晶型结构、多元化储能机制及储能过程中的动力学特征,简单阐述了材料在电化学储能中存在的问题,分析了金属草酸基负极材料在形貌晶型控制、界面碳复合改性和金属元素掺杂方面的改性策略。最后,预测了金属草酸基负极材料在碱金属离子电池体系的发展方向。  相似文献   

7.
目前锂离子电池电极材料主要使用无机材料. 近年来有机物电极材料虽有报道,但这些材料大都比容量低、倍率性能差. 本文介绍一类新型有机金属配合物聚吡咯-过渡金属-氧储锂材料的合成、结构及电化学性能. 结合扩展X-射线吸收精细结构谱分析和密度泛函理论计算,发现这类材料呈现多层结构特征,层内稳定的过渡金属-吡咯N的配位作用及循环过程中层间过渡金属-氧键的可逆断裂和结合使该类材料具有很高的储锂容量和循环稳定性,且聚吡咯导电网络使得该材料具有良好的倍率性能. 这类新材料将有望成为锂离子电池的高比容量负极材料.  相似文献   

8.
锂离子电池电极材料在充放电过程中由于锂离子嵌入和脱嵌,电极材料在膨胀和收缩过程中极易粉化而导致电池失效.无机中空纳米材料具有较高的比表面积,可调的空腔体积以及壳层厚度,并且每一个中空颗粒都可以作为一个微反应室,从而增加了反应界面,作为锂电池电极材料,无机中空纳米材料能够适应充放电过程中颗粒的膨胀和收缩,表现出优异的性能.面对传统模板法的局限性,基于Kirkendall效应等新的机理或方法以其操作步骤简单、无模板等优点,有望实现低成本的规模化生产.本文综述了利用Kirkendall效应,Oswald熟化和溶剂热3种机理或方法制备中空无机纳米材料作为锂离子电池电极材料的最新研究进展,并对其应用前景进行了展望.  相似文献   

9.
硅材料作为锂离子电池负极材料具有比容量大的优点,是高容量锂离子负极材料的研究热点之一.论文综述了近年来锂离子电池硅负极材料的研究进展.分别对硅和含硅材料作为锂离子电池负极材料的发展过程、充放电特性、储锂机理及影响其储锂的各因素进行了分析和总结,并对其存在的问题进行了分析.  相似文献   

10.
《化学进展》2021,33(4):633-648
科技进步使可穿戴设备等便携式电子产品得到了快速发展,柔性电池作为其核心部件,受到越来越多研究者的关注。锂离子电池因具有良好的循环稳定性和较长的使用寿命等优点,成为各类产品的主要电源。为满足电子产品柔性化、微型化发展需求,开发高能量密度的柔性锂离子电池成为亟待解决的问题,作为其关键材料之一的柔性电极是重要的研究方向。本文阐述了柔性锂离子电池电极的研究进展,包括基于自身带有电化学活性的碳材料、Mxene材料的一体化柔性电极,基于非电化学活性的聚合物材料、纺织材料、金属基的一体化柔性电极,以及为满足可穿戴设备可编织和大尺寸形变使用需求的宏观柔性新型电极结构设计,分析并探讨了柔性电极目前存在的问题,以期为未来高能量密度柔性锂离子电池的研究提供新的思路。  相似文献   

11.
锂离子电池的发展主要依赖于电极材料的突破,解决现有电极材料存在的问题和预测新型未知材料是提高锂离子电池性能的关键,而第一性原理计算的出现能够较好的满足这一需求。本文介绍了第一性原理计算在锂离子电池正极材料研究方面的原理和应用,并对该原理在正极材料的平均嵌锂电压计算,嵌/脱锂机理、结构稳定性研究及新材料预测等方面的应用进行了详细论述,并指出了这一理论计算工具在电池材料设计过程中的重要性和局限性。  相似文献   

12.
李婷  杨汉西 《电化学》2015,21(2):115-122
电化学转换反应作为一种新的电极反应机制,近年来受到相当多的关注. 转换反应不仅能够利用金属化合物的多价态氧化还原,大幅度提高电化学容量利用率,而且对于主体晶格的结构、嵌脱阳离子的尺寸并无特殊要求,可以应用于众多不同种类的金属化合物,针对不同的金属离子设计高容量正负极活性材料. 因此,基于转换反应构建高容量电极材料正成为二次电池发展的一个新方向. 本文简要分析了电化学转换反应的基本原理和实现条件,并结合作者课题组近年来的研究工作探讨了这类反应在锂离子及钠离子电池中的潜在应用.  相似文献   

13.
Mechanical degradation of electrode materials, in the form of particle cracking and fragmentation, disintegration, fracturing, and loss in contact between current collectors and the active electrode materials, can affect or deteriorate the performance of Li-ion batteries dramatically and even lead to the battery failure in electric vehicle. This paper firstly built a single particle model (SPM) based upon kinetics of electrochemical reactions. Then the Li-ion concentration, evolution of diffusion induced stresses within the SPM under potentiostatic or galvanostatic operating conditions were analyzed by utilizing a mathematical method. Next, evolution of stresses or strains in the SPM, at the core of relates with mechanical degradation of electrode materials, are elaborated in detail. Finally, surface and morphology of the electrodes dismantled from fresh and degraded cells after galvanostatic charge/discharge cycling have been analyzed to verify the hypothesis aforementioned by observing scanning electron microscopy and analyzing X-ray diffraction.  相似文献   

14.
Recent advances in the applications of transition metal chalcogenides/graphene (TMC/graphene) nanocomposites in future energy storage and conversion are reviewed. The synthesis processes and structures of TMC/graphene, workingpriciple of evergy energy device, and the electrochemical performances are summarized.  相似文献   

15.
With progress of knowledge of electrode materials, it has been found that their surface structures are of great importance to the electrochemical performance of Li-ion batteries. Carbon coating can effectively increase the electrode conductivity, improve the surface chemistry of the active material, and protect the electrode from direct contact with electrolyte, leading to enhanced cycle life of the batteries. Carbon coating together with nanotechnology provides good conductivity as well as fast Li-ion diffusion, and thus also results in good rate capabilities. The recent development of carbon coating techniques in lithium-ion batteries is discussed with detailed examples of typical cathode and anode materials. The limitation of current technology and future perspective of the new concept of "hybrid coating" are also pointed out.  相似文献   

16.
Lithium-ion batteries (LIB) have received substantial attention in the last 10 years,as they offer great promise as power sources that can lead to the electric vehicle (EV) revolution in the next 5 years.Since the cathode serves as a key component in LIB,its properties significantly affect the performance of the whole system.Recently,the cathode surface modification based on coating technique has been widely employed to enhance the electrochemical performances by improving the material conductivity,stabilising the physical structure of materials,as well as preventing the reactions between the electrode and electrolyte.In this work,we reviewed the present of a number of promising cathode materials for Li-ion batteries.After that,we summarized the very recent research progress focusing on the surface coating strategies,mainly including the coating materials,the coating technologies,as well as the corresponding working mechanisms for cathodes.At last,the challenges faced and future guidelines for optimizing cathode materials are discussed.In this study,we propose that the structure of cathode is a crucial factor during the selection of coating materials and technologies.  相似文献   

17.
Journal of Solid State Electrochemistry - The increasing demands for higher energy density and higher power capacity of Li-ion secondary batteries have led to a search for electrode materials whose...  相似文献   

18.
Si-based anode materials in Li-ion batteries (LIBs) suffer from severe volume expansion/contraction during repetitive discharge/charge, which results in the pulverization of active materials, continuous growth of solid electrolyte interface (SEI) layers, loss of electrical conduction, and, eventually, battery failure. Herein, we present unprecedented low-content phosphorene (single-layer black phosphorus) encapsulation of silicon particles as an effective method for improving the electrochemical performance of Si-based LIB anodes. The incorporation of low phosphorene amounts (1%, mass fraction) into Si anodes effectively suppresses the detrimental effects of volume expansion and SEI growth, preserving the structural integrity of the electrode during cycling and achieving enhanced Coulombic efficiency, capacity retention, and cycling stability for Li-ion storage. Thus, the developed method can also be applied to other battery materials with high energy density exhibiting substantial volume changes.  相似文献   

19.
We report a computational study on 3d transition-metal (Cr, Mn, Fe, and Co) carbodiimides in Li- and Na-ion batteries. The obtained cell voltages semi-quantitatively fit the experiments, highlighting the practicality of PBE+U as an approach for modeling the conversion-reaction mechanism of the FeNCN archetype with lithium and sodium. Also, the calculated voltage profiles agree satisfactorily with experiment both for full (Li-ion battery) and partial (Na-ion battery) discharge, even though experimental atomistic knowledge is missing up to now. Moreover, we rationalize the structural preference of intermediate ternaries and their characteristic lowering in the voltage profile using chemical-bonding and Mulliken-charge analysis. The formation of such ternary intermediates for the lithiation of FeNCN and the contribution of at least one ternary intermediate is also confirmed experimentally. This theoretical approach, aided by experimental findings, supports the atomistic exploration of electrode materials governed by conversion reactions.  相似文献   

20.
Volume change during the insertion/extraction of Li~+ in electrode materials is an important issue to affect the safety and stability of Li-ion batteries. Here, we prepare a near-zero volume change material of COF derived mesh-liked carbon/TiO_2(MC/TiO_2) composite by using a layered TiO_2 as a template, and a two-dimensional COF material is inserted into the interlayers by the Schiff base polymerization between melamine and terephthalaldehyde, followed by carbonization at 500 ℃ to convert COF to mesh-liked carbon nanosheets. Due to the introduction of mesh-liked carbon nanosheets, the interlayer conductivity of TiO_2 is improved, and the nanocavities in mesh-liked carbon nanosheets provide additional chambers for the insertion/extraction of Li-ions without any change of the interlayer distance. The MC/TiO_2 shows a specific capacity of 472.7 mAh/g at a current density of 0.1 A/g, and good specific capacity retention of 65% remains after 1000 cycles at a current of 1 A/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号