首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The electrochemical performance of Li3V2(PO4)3/C was investigated at various low temperatures in the electrolyte 1.0 mol dm−3 LiPF6/ethyl carbonate (EC)+diethyl carbonate (DEC)+dimethyl carbonate (DMC) (volume ratio 1:1:1). The stable specific discharge capacity is 125.4, 122.6, 119.3, 116.6, 111.4, and 105.7 mAh g−1 at 26, 10, 0, −10, −20, and −30 °C, respectively, in the voltage range of 2.3–4.5 V at 0.2 C rate. When the temperature decreases from −30 to −40 °C, there is a rapid decline in the capacity from 105.7 to 69.5 mAh g−1, implying that there is a nonlinear relationship between the performance and temperature. With temperature decreasing, R ct (corresponding to charge transfer resistance) increases rapidly, D (the lithium ion diffusion coefficients) decreases sharply, and the performance of electrolyte degenerates obviously, illustrating that the low-temperature electrochemical performance of Li3V2(PO4)3/C is mainly limited by R ct, D Li, and electrolyte.  相似文献   

2.
《Solid State Sciences》2012,14(7):864-869
A series of Li3V2(PO4)3/C cathode materials with different morphologies were successfully prepared by controlling temperatures using maleic acid as carbon source via a simple sol–gel reaction method. The Li3V2(PO4)3/C nanorods synthesized at 700 °C with diameters of about 30–50 nm and lengths of about 800 nm show the highest initial discharge capacity of 179.8 and 154.6 mA h g−1 between 3.0 and 4.8 V at 0.1 and 0.5 C, respectively. Even at a discharge rate of 0.5 C over 50 cycles, the products still can deliver a discharge capacity of 140.2 mA h g−1 in the potential region of 3.0–4.8 V. The excellent electrochemical performance can be attributed to one-dimensional nanorod structure and uniform particle size distribution. All these results indicate that the resulting Li3V2(PO4)3/C is a very strong candidate to be a cathode in a next-generation Li-ion battery for electric-vehicle applications.  相似文献   

3.
The macroporous Li3V2(PO4)3/C composite was synthesized by oxalic acid-assisted carbon thermal reaction, and the common Li3V2(PO4)3/C composite was also prepared for comparison. These samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and electrochemical performance tests. Based on XRD and SEM results, the sample has monoclinic structure and macroporous morphology when oxalic acid is introduced. Electrochemical tests show that the macroporous Li3V2(PO4)3/C sample has a high initial discharge capacity (130 mAh g−1 at 0.1 C) and a reversible discharge capacity of 124.9 mAh g−1 over 20 cycles. Moreover, the discharge capacity of the sample is still 91.5 mAh g−1, even at a high rate of 2 C, which is better than that of the sample with common morphology. The improvement in electrochemical performance should be attributed to its improved lithium ion diffusion coefficient for the macroporous morphology, which was verfied by cyclic voltammetry and electrochemical impedance spectroscopy.  相似文献   

4.
Hybrid materials xLiFePO4·(1 − x)Li3V2(PO4)3 were synthesized by sol–gel method, with phenolic resin as carbon source and chelating agent, methylglycol as surfactant. The crystal structure, morphology and electrochemical performance of the prepared samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), galvanostatic charge–discharge test and particle size analysis. The results show that LiFePO4 and Li3V2(PO4)3 co-exist in hybrid materials, but react in single phase. Compared with individual LiFePO4 and Li3V2(PO4)3 samples, hybrid materials have smaller particle size and more uniform grain distribution. This structure can facilitate Li ions extraction and insertion, which greatly improves the electrochemical properties. The sample 0.7LiFePO4·0.3Li3V2(PO4)3 retains the advantages of LiFePO4 and Li3V2(PO4)3, obtaining an initial discharge capacity of 166 mA h/g at 0.1 C rate and 109 mA h/g at 20 C rate, with a capacity retention rate of 73.3% and an excellent cycle stability.  相似文献   

5.
A convenient method named wet coordination is used to prepare the sample or carbon-coated Li3V2(PO4)3 in the furnace with a flowing argon atmosphere at 600 °C for 1 h. The sample is characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and energy dispersive analysis of X-rays (EDAX). Galvanostatic charge–discharge between 3.3 and 4.3 V (vs. Li/Li+) shows that the sample exhibits a high discharge capacity of 128 mAh g?1 with a good reversible performance under a current density of 95 mA g?1. It suggests that carbon-coated Li3V2(PO4)3 with good electrochemical performance can be obtained via this method, which is suitable for large-scale production.  相似文献   

6.
Nano-structured Li3V2(PO4)3/carbon composite (Li3V2(PO4)3/C) has been successfully prepared by incorporating the precursor solution into a highly mesoporous carbon with an expanded pore structure. X-ray diffraction analysis, scanning electron microscopy, and transmission electron microscopy were used to characterize the structure of the composites. Li3V2(PO4)3 had particle sizes of < 50 nm and was well dispersed in the carbon matrix. When cycled within a voltage range of 3 to 4.3 V, a Li3V2(PO4)3/C composite delivered a reversible capacity of 122 mA h g? 1 at a 1C rate and maintained a specific discharge capacity of 83 mA h g? 1 at a 32C rate. These results demonstrate that cathodes made from a nano-structured Li3V2(PO4)3 and mesoporous carbon composite material have great potential for use in high-power Li-ion batteries.  相似文献   

7.
Triclinic LiVPO4F and monoclinic Li3V2(PO4)3 are synthesized through a soft chemical process with mechanical activation assist, followed by annealing. In this process, ascorbic acid is used as reducing agent as well as carbon source. The as-prepared samples are coated with amorphous carbon. XPS analysis results show the expected valency states of ions in LiVPO4F and Li3V2(PO4)3. The electrochemical properties of the prepared LiVPO4F/C and Li3V2(PO4)3/C cathodes are evaluated. The as-prepared LiVPO4F/C cathode shows an initial discharge specific capacity of 140?±?3 mAh?g?1 at 30 mA?g?1 in the voltage range of 3.0~4.4 V, compared with that of 138?±?3 mAh?g?1 possessed by Li3V2(PO4)3/C. Both samples exhibit good cycle performance at different current densities. The capacity delivered by LiVPO4F remains 95.5 and 91.7 % of its initial discharge capacity after 50 cycles at 150 and 750 mA?g?1, respectively, while 97.4 and 90.6 % for Li3V2(PO4)3/C. But the rate capability of LiVPO4F/C is not so good compared with as-prepared Li3V2(PO4)3/C.  相似文献   

8.
Pan Zhou  Dawei He 《中国化学》2016,34(8):795-800
In this study, core‐shell structured Li3V2(PO4)3/C wrapped in graphene nanosheets has been successfully prepared. The reduction of graphene oxide and the synthesis of Li3V2(PO4)3/C are carried out simultaneously using a chemical route followed by a solid‐state reaction. The effects of conducting graphene are studied by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectra and electrochemical measurements. The results reveal that the graphene sheets not only form a compact and uniform coating layer throughout the Li3V2(PO4)3/C, but also stretch out and cross‐link into a conducting network around the Li3V2(PO4)3/C particles. Thus, the graphene decorated Li3V2(PO4)3/C electrode exhibits superior high‐rate capability and long‐cycle stability. It delivers a reversible discharge capacity of 178.2 mAh·g?1 after 60 cycles at a current density of 0.1 C, and the rate performances of 176, 169.3, 156.1 and 135.7 mAh·g?1 at 1, 2, 5 and 10 C, respectively. The superior electrochemical properties make the graphene decorated Li3V2(PO4)3/C composite a promising cathode material for high‐performance lithium‐ion battery.  相似文献   

9.
LiVPO4F/C composites with better electrochemical performance were prepared by calcination of LiF and amorphous vanadium phosphorus oxide (VPO) intermediate synthesized by a sol–gel method using H3PO4, V2O5 and citric acid as raw materials. The properties of LiVPO4F/C composites were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical tests. The analysis of XRD patterns and Fourier transform infrared spectra (FTIR) reveal that VPO intermediate prepared by sol–gel method is amorphous and VPO4 may exist in VPO intermediate. The compositions of LiVPO4F/C composites are related to the calcination temperature for preparation of amorphous VPO/C intermediate and LiVPO4F/C composite prepared by VPO/C synthesized at 700°C consists of a single crystal phase of LiVPO4F. The electrochemical tests show that LiVPO4F/C composite prepared by VPO/C synthesized at 700°C exhibits higher discharge capacity and excellent cycle performance. This LiVPO4F/C composite displays discharge capacity of 133 mAh g−1 at 0.5 C (78 mA g−1) and remains capacity retention of 96.8% after 30 cycles, even at a high rate of 5 C, the composite exhibits high discharge capacity of 115 mAh g−1 and capacity retention of 97% after 100 cycles.  相似文献   

10.
采用溶胶-凝胶法合成了锂离子正极材料Li3V2(PO4)3/C(LVP/C)及Li2.5Na0.5V2(PO4)3/C,并用XRD、循环伏安及交流阻抗等方法,研究了大量Na+掺杂对材料结构和电化学性能影响。结果表明,大量钠离子的掺杂会使LVP结构由单斜向菱方转变。掺杂化合物Li2.5Na0.5V2(PO4)3/C在0.5 C充电1 C放电时,首次放电容量为118 mAh.g-1,50次循环后容量保持率为92.4%,并发现与单斜LVP存在多个放电平台不同,Li2.5Na0.5V2(PO4)3/C仅在3.7 V处有一个放电平台。  相似文献   

11.
All-solid-state phosphate symmetric cells using Li3V2(PO4)3 for both the positive and negative electrodes with the phosphate Li1.5Al0.5Ge1.5(PO4)3 as the solid electrolyte were proposed. Amorphous Li1.5Al0.5Ge1.5(PO4)3 was added into the electrode to increase the interface area between the active materials and the electrolyte. Any other phases were not formed at the electrode/electrolyte interface even after hot pressing at 600 °C. The discharge capacity was 92 mAh g? 1 at 22 µA cm? 2 at 80 °C, and 38 mAh g? 1 at 25 °C, respectively. Symmetric cell configuration leads to simplify the fabrication process for all-solid-state batteries and will reduce manufacturing costs.  相似文献   

12.
Li2O–Al2O3–TiO2–P2O5 (LATP) glass was fabricated by conventional melt quenching route. Glass transition temperature (T g = 296 °C) and crystallization temperatures (T C1,2) were obtained from thermal analysis. LATP glass was converted to glass–ceramic by heat treatment in the range 550–950 °C for 6 h. X-ray diffraction analysis revealed LiTi2(PO4)3 as a major phase. Ionic conductivity increased monotonically with concentration, reaching a maximum of ~10−4 S/cm. AlPO4 phase was detected in samples heat-treated above 850 °C. Its presence decreased the conductivity, suggesting LiTi2(PO4)3 phase as main contributor to high ionic conductivity. NMR spectra confirmed the presence of mobile 7Li ions in the entire sample series and also gave some information on the structure and dynamics of conductivity.  相似文献   

13.
A monoclinic lithium vanadium phosphate (Li3V2(PO4)3) and carbon composite thin film (LVP/C) is prepared via electrostatic spray deposition. The film is studied with X-ray diffraction, scanning and transmission electron microscopy and galvanostatic cell cycling. The LVP/C film is composed of carbon-coated Li3V2(PO4)3 nanoparticles (50 nm) that are well distributed in a carbon matrix. In the voltage range of 3.0–4.3 V, it exhibits a reversible capacity of 118 mA h g?1 and good capacity retention at the current rate of 1 C, while delivers 80 mA h g?1 at 24 C. These results suggest a practical strategy to develop new cathode materials for high power lithium-ion batteries.  相似文献   

14.
As a kind of lithium-ion battery cathode material, monoclinic lithium vanadium phosphate/carbon Li3V2(PO4)3/C was synthesized by adopting phenolic resin as carbon source, both for reducing agent and coating material. The crystal structure and morphology of the samples were characterized through X-ray diffraction (XRD) and scanning electron microscope (SEM). Galvanostatic charge-discharging experiments and electrochemical impedance spectrum (EIS) were utilized to determine the electrochemical insertion properties of the samples. XRD data revealed that phenolic resin does not change the crystal structure of Li3V2(PO4)3/C. Furthermore, the morphology of grains and the electronic conductivity of Li3V2(PO4)3/C were improved. Galvanostatic charge-discharging and EIS results showed that the optimal electrochemical properties and the minimum charge-transfer resistance of Li3V2(PO4)3/C can be reached when added by 5 wt.% of redundant carbon (except the carbon needed to reduce V5+ to V3+). The initial discharge capacity is 128.4 mAh g?1 at 0.2 C rate and 101.2 mAh g?1 at 5 C in the voltage range of 3.0~4.3 V.  相似文献   

15.
The flake-like Li3V2(PO4)3/C has been successfully synthesized by rheological phase method using polyvinyl alcohol (PVA) as template; the Li3V2(PO4)3/C without PVA assistance has been prepared for comparison. X-ray diffraction analysis shows that the two samples are well crystallized, and no impurity phases are detected. The scanning electron microscopy results reveal that there is a significant difference in morphologies between PVA-assisted sample and sample without PVA; the former shows a flake-like morphology, while the latter presents regular granular shape with some agglomeration. Transmission electron microscopy images reveal that Li3V2(PO4)3 particles are coated with a uniform surface carbon layer. The lattice fringes with a spacing of 0.428 nm can be clearly seen from the high-resolution transmission electron microscopy image. The PVA-assisted sample shows a discharge capacity of 120, 110, and 96 mAh g?1 at 1 C, 20 C, and 50 C, respectively; however, the sample without PVA exhibits a lower discharge capacity. Based on the analysis of electrochemical impedance spectroscopy, the lithium ion diffusion coefficients of Li3V2(PO4)3/C and PVA-assisted Li3V2(PO4)3/C are 4.19?×?10?9 and 4.99?×?10?8 cm2 s?1, respectively. In summary, it is demonstrated that using PVA as a template can obtain flake-like morphology and significantly improve the comprehensive electrochemical performances of Li3V2(PO4)3/C cathode material.  相似文献   

16.
The novel Li3V2(PO4)3 glass-ceramic nanocomposites were synthesized and investigated as electrodes for energy storage devices. They were fabricated by heat treatment (HT) of 37.5Li2O–25V2O5–37.5P2O5?mol% glass at 450 °C for different times in the air. XRD, SEM, and electrochemical methods were used to study the effect of HT time on the nanostructure and electrochemical performance for Li3V2(PO4)3 glass-ceramic nanocomposites electrodes. XRD patterns showed forming Li3V2(PO4)3 NASICON type with monoclinic structure. The crystalline sizes were found to be in the range of 32–56 nm. SEM morphologies exhibited non-uniform grains and changed with variation of HT time. The electrochemical performance of Li3V2(PO4)3 glass-ceramic nanocomposites was investigated by using galvanostatic charge/discharge methods, cyclic voltammetry, and electrochemical impedance spectroscopy in 1 M H2SO4 aqueous electrolyte. The glass-ceramic nanocomposites annealed for 4 h, which had a lower crystalline size, exhibited the best electrochemical performance with a specific capacity of 116.4 F g?1 at 0.5 A g?1. Small crystalline size supported the lithium ion mobility in the electrode by decreasing the ion diffusion pathway. Therefore, the Li3V2(PO4)3 glass-ceramic nanocomposites can be promising candidates for large-scale industrial applications in high-performance energy storage devices.  相似文献   

17.
Monodisperse Li4Ti5O12 hollow spheres were prepared by using carbon spheres as templates. Scanning electron microscopy images show hollow spheres that have an average outer diameter of 1.0 μm and an average wall thickness of 60 nm. Compared with Li4Ti5O12 solids, the hollow spherical Li4Ti5O12 exhibit an excellent rate capability and capacity retention and can be charged/discharged at 10 C (1.7 A g−1) with a specific capacity of 100 mA h g−1, and after 200 charge and discharge cycles at 2 C, their specific capacity remain very stable at 150 mA h g−1. It is believed that the hollow structure has a relatively large contact surface between Li4Ti5O12 and liquid electrolyte, resulting in a better electrochemical performance at high charge/discharge rate.  相似文献   

18.
Natural graphite treated by mechanical activation can be directly applied to the preparation of Li3V2(PO4)3. The carbon-coated Li3V2(PO4)3 with monoclinic structure was successfully synthesized by using natural graphite as carbon source and reducing agent. The amount of activated graphite is optimized by X-ray diffraction, scanning electron microscope, transmission electron microscope, Raman spectrum, galvanostatic charge/discharge measurements, cyclic voltammetry, and electrochemical impedance spectroscopy tests. Our results show that Li3V2(PO4)3 (LVP)-10G exhibits the highest initial discharge capacity of 189 mAh g?1 at 0.1 C and 162.9 mAh g?1 at 1 C in the voltage range of 3.0–4.8 V. Therefore, natural graphite is a promising carbon source for LVP cathode material in lithium ion batteries.  相似文献   

19.
Ba10−x Cs x (PO4)6Cl2, (x = 0, 0.5) chloroapatite ceramics were prepared by sonochemical method of synthesis. The measured room temperature lattice parameters of Ba10 (PO4)6Cl2 and Ba9.5Cs0.5 (PO4)6Cl2−δ are practically the same; that is, a = 10.26 (8), c = 7.65 (7) and a = 10.27 (7), c = 7.65 (5), respectively. Heat capacity measurements were carried out on these materials by differential scanning calorimetry (DSC) in the temperature range 298–800 K. The heat capacity values of Ba9.5Cs0.5(PO4)6Cl2−δ are found to be slightly higher at all temperatures than those of Ba10(PO4)6Cl2. From the heat capacity data, other thermodynamic functions such as enthalpy and entropy increments were computed. The heat capacity values of Ba10(PO4)6Cl2 and Ba9.5Cs0.5(PO4)6Cl2−δ at 298 K are 0.3912 and 0.4310 J K−1 g−1, respectively. Thermal expansion property of the doped and undoped barium chloroapatites was measured by using a home built dilatometer which uses LVDT as displacement sensor. The bulk thermal expansion of Ba10(PO4)Cl2 and Ba9.5Cs0.5(PO4)Cl2−δ is observed to be about 0.9% in the temperature range of 298–973 K.  相似文献   

20.
LiNi1/3Co1/3Mn1/3O2 cathode materials for the application of lithium ion batteries were synthesized by carbonate co-precipitation routine using different ammonium salt as a complexant. The structures and morphologies of the precursor [Ni1/3Co1/3Mn1/3]CO3 and LiNi1/3Co1/3Mn1/3O2 were investigated through X-ray diffraction, scanning electron microscope, and transmission electron microscopy. The electrochemical properties of LiNi1/3Co1/3Mn1/3O2 were examined using charge/discharge cycling and cyclic voltammogram tests. The results revealed that the microscopic structures, particle size distribution, and the morphology properties of the precursor and electrochemical performance of LiNi1/3Co1/3Mn1/3O2 were primarily dependent on the complexant. Among all as-prepared LiNi1/3Co1/3Mn1/3O2 cathode materials, the sample prepared from Na2CO3–NH4HCO3 routine using NH4HCO3 as the complexant showed the smallest irreversible capacity of 19.5 mAh g−1 and highest discharge capacity of 178.4 mAh g−1 at the first cycle as well as stable cycling performance (98.7% of the initial capacity was retained after 50 cycles) at 0.1 C (20 mA g−1) in the voltage range of 2.5–4.4 V vs. Li+/Li. Moreover, it delivered high discharge capacity of over 135 mAh g−1 at 5 C (1,000 mA g−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号