首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The electronic structure of thin films of the organic semiconductor tin phthalocyanine (SnPc) has been investigated by resonant and non-resonant soft X-ray emission (RXES and XES) at the carbon and nitrogen K-edges with excitation energies determined from near edge X-ray absorption fine structure (NEXAFS) spectra. The resultant NEXAFS and RXES spectra measure the unoccupied and occupied C and N 2p projected density of states, respectively. In particular, RXES results in site-specific C 2p and N 2p local partial density of states (LPDOS) being measured. An angular dependence of C 2p and N 2p RXES spectra of SnPc was observed. The observed angular dependence, the measured LPDOS and their correspondence to the results of density functional theory calculations are discussed. Observed differences on the same site-specific features between resonant (non-ionising) and non-resonant (ionising) NXES spectra are attributed to symmetry selection and screening.  相似文献   

2.
Spin-selected polarized X-ray absorption near-edge structures (SSXANES) at the Mn K-edge from a bilayer La1.2Sr1.65Ca0.15Mn2O7 single crystal have been studied with high resolution, both in the ferromagnetic (15 K) as well as paramagnetic phase (300 K). The orientation-dependent SSXANES spectra show unmistakable temperature dependence as the system makes the ferromagnetic to paramagnetic phase transition. The pre-edge structures are too intense to be ascribed to weak quadrupole transitions and are interpreted in terms of hybridization of Mn 3d orbitals with O2p and Mn 4p orbitals over and above similar onsite hybridization. The results also indicate possible existence of a small local (time-frozen) ferromagnetic ordering in the macroscopically disordered state. Need for further experimental and theoretical work on the SSXANES spectra from the bilayer system is emphasized.  相似文献   

3.
Near-edge x-ray absorption fine structure (NEXAFS) and surface extended x-ray absorption fine structure (SEXAFS) spectroscopies and their application to the determination of the adsorption geometry and bonding of low-Z molecules on surfaces are discussed. NEXAFS is characterized by intramolecular resonances and probes the internal structure of the molecule (intramolecular bond lengths and possibly bond angles) as well as its orientation relative to the surface. SEXAFS provides information about the adsorption site and the molecule-substrate distances. After demonstrating the full power of SEXAFS in the analysis of oxygen adsorption on Cu(110) and on Ag(110) an example is given of a complete structure determination for the formate species (HCO2) on Cu(110) using NEXAFS and SEXAFS.  相似文献   

4.
5.
Thermo-gravimetric, differential scanning calorimetry and comprehensive 57Fe Mössbauer spectroscopy studies of amorphous and crystalline ferromagnetic glass coated (Co0.2Fe0.8)72.5Si12.5B15 micro-wires have been recorded. The Curie temperature of the amorphous phase is TC(amorp) ∼730 K. The analysis of the Mössbauer spectra reveals that below 623 K the easy axis of the magnetization is axial-along the wires, and that a tangential or/and radial orientation occurs at higher temperatures. At 770 K, in the first 4 hours the Mössbauer spectrum exhibits a pure paramagnetic doublet. Crystallization and decomposition to predominantly α-Fe(Si) and Fe2B occurs either by raising the temperature above 835 K or isothermally in time at lower temperatures. Annealing for a day at 770 K, leads to crystallization. In the crystalline material the magnetic moments have a complete random orientation. After cooling back to ambient temperature, both α-Fe(Si) and Fe2B in the glass coated wire show pure axial magnetic orientation like in the original amorphous state. The observed spin reorientations are associated with changes in the stress induced by the glass coating.  相似文献   

6.
The effect of heat treatment on silica aerogel has been studied by a positron age–momentum correlation technique and infrared measurement. A difference was observed between the momentum distributions of the electrons on the first layers of the silica aerogel grain surfaces and the electrons in the grains in an as-supplied sample, but not in the sample heat treated at 800 °C. A large change in the S parameter for the momentum distribution of the electrons on the first layer occurs around 200 °C. This change correlates well with that of the infrared spectra, which show oxidation of the methoxyl groups at temperatures above around 200 °C. This correlation reveals that those groups are mainly located on the first layer of the silica grains. Received: 13 November 2000 / Accepted: 23 July 2001 / Published online: 30 October 2001  相似文献   

7.
The anisotropy of atomic bonds formed by acceptor dopants with nitrogen in bulk wurtzite GaN crystals was studied by means of linearly polarized synchrotron radiation used in measurements of X-ray-absorption spectra for the K-edgeof Mg and Zn dopants. These spectra correspond to i) a single acceptor N bond along the c-axis and ii) three bonds realized with N atoms occupying the ab-plane perpendicular to the c-axis. The Zn dopant formed resonant spectra similar to that characteristic for Ga cations. In the case of the Mg dopant, similarity to Ga cations was observed for triple bonds in the ab-plane, only. Practically no resonant structure for spectra detected along the c-axis was observed. The absorption spectra were compared with ab initio calculations using the full-potential linear muffin-tin-orbital method. These calculations were also used for determination of the bond length for Mg–N and Zn–N in wurtzite GaN crystals and show that introducing dopants causes an increase of the lengths of the bonds formed by both dopants. Extended X-ray-absorption fine-structure measurements performed for bulk GaN:Zn confirmed the prediction of the theory in the case of the Zn–N bond. Finally, it is suggested that the anisotropy in the length of the Mg–N bonds, related to their larger strength in the case of bonds in the ab-plane, can explain preferential formation of a superlattice consisting of Mg-rich layers arranged in ab-planes of several bulk GaN:Mg crystals observed by transmission electron microscopy. Within the sensitivity of the method used, no parasitic metallic clusters or oxide compounds formed by the considered acceptors in GaN crystals were found. Received: 1 March 2001 / Accepted: 19 September 2001 / Published online: 20 December 2001 / Published online: 20 December 2001  相似文献   

8.
The electronic structure of p-type GaN layers exposed to low-energy nitrogen ion bombardment was studied by near-edge X-ray absorption fine-structure (NEXAFS) spectroscopy. It was found that ion bombardment lead to the creation of states lying below the nitrogen absorption edge which posses p-symmetry. These states are attributed to nitrogen interstitials with different local topologies created during ion bombardment. Furthermore, the NEXAFS spectra also shows the development of a strong -resonance above the absorption edge with increasing incident nitrogen ion energy. This peak is attributed to the formation of molecular nitrogen at interstitial positions, arising from a build up of nitrogen ions on these sites.  相似文献   

9.
10.
The structural, transport and electron spin resonance properties of bulk and nanosized La0.875Sr0.125MnO3 prepared by a sol-gel method have been investigated. The bulk sample has an orthorhombic structure and a ferromagnetic insulating ground state. The ESR spectra indicate the coexistence of the ferromagnetic insulating and ferromagnetic metallic phases below TC. In addition to a sharp peak in the vicinity of TC, another sharp peak close to is clearly observed in the intensity of the spectra, which may be correlated with the structural transition and orbital ordering at this temperature. For the nanosized sample, a drastically different behavior is found. With a rhombohedral structure down to 70 K, the nanosized sample shows a ferromagnetic metallic ground state. The ESR studies reveal the coexistence of the paramagnetic and ferromagnetic resonance signals. The resonance intensity shows a broad peak around 200 K, which may be due to the wide ferromagnetic transition in the nanoparticle.  相似文献   

11.
Giant magnetoresistance (GMR) of sequentially evaporated Fe-Ag structures has been investigated. Direct experimental evidence is given, showing that inserting ferromagnetic layers into a granular structure significantly enhances the magnetoresistance. The increase in the GMR effect is attributed to spin polarization effects. The large enhancement (up to more than a fourfold value) and the linear variation of the GMR in low magnetic fields are explained by scattering of the spin polarized conduction electrons on paramagnetic grains.  相似文献   

12.
We review our recent X-ray scattering studies of charge and orbital order in doped manganites, with specific emphasis on the role of orbital correlations in Pr1-xCaxMnO3. For x=0.25, we find an orbital structure indistinguishable from the undoped structure and long-range orbital order at low temperatures. For dopings 0.3≤x≤0.5, we find scattering consistent with a charge and orbitally ordered CE-type structure. While in each case the charge order peaks are resolution limited, the orbital order exhibits only short-range correlations. We report the doping dependence of the correlation length and discuss the connection between the orbital correlations and the finite magnetic correlation length observed on the Mn3+ sublattice with neutron-scattering techniques. The physical origin of these domains, which appear to be isotropic, remains unclear. We find that weak orbital correlations persist well above the phase transition, with a correlation length of 1–2 lattice constants at high temperatures. Significantly, we observe similar correlations at high temperatures in La0.7Ca0.3MnO3, which does not have an orbitally ordered ground state, and we conclude that such correlations are robust to variations in the relative strength of the electron–phonon coupling. Received: 22 May 2001 / Accepted: 4 July 2001 / Published online: 5 October 2001  相似文献   

13.
Magnetic excitations in MnO have been investigated by using both the TOF and triple-axis methods. A remarkable feature of the present study is that the existence of spin-wave-like excitations in the paramagnetic phase has been confirmed by the two methods. It is argued that these spin excitations are closely related to Ginzburg's theory which predicts the existence of paramagnetic spin waves in the presence of anisotropy.  相似文献   

14.
Large spin–orbit interaction produces large orbital magnetic moments in narrow energy bands. Since the orbital character of the wave functions is more important in orbital than in spin magnetism, the limitations of the local spin density approximation become evident. It is possible to keep the orbital dependence of the exchange interactions by using an orbital polarization scheme or by using Hartree–Fock theory with screened Slater integrals for exchange. This leads to an enhancement of the calculated orbital moment when the magnetism is strong. Recently calculated magnetic moments and calculated sum rules for X-ray magnetic circular dichroism in US are described. Received: 23 May 2001 / Accepted: 4 July 2001 / Published online: 5 October 2001  相似文献   

15.
The element and electronic shell specificities of X-ray resonant magnetic scattering have been used to investigate the magnetization of Ce 5d and Fe 3d states in [CeH2(19.6 ?)/Fe(25.4 ?)]*38 a multilayer. We show that the measurement of the magnetic contribution to the intensities reflected at low angles at the Ce L2 and Fe L2,3 edges allows us to investigate the profile of the Ce 5d and Fe 3d magnetic polarization. The Fe 3d polarization is found to be uniform across the Fe layer and the Ce 5d polarization appears to be restricted close to the interface with Fe. Received: 22 May 2001 / Accepted: 4 July 2001 / Published online: 5 October 2001  相似文献   

16.
It is shown that magnetic X-ray circular dichroism (MXCD) can be exploited in photoemission electron microscopy not only to visualize the domain structure of ferromagnets, but also to perform quantitative measurements of the stray magnetic fields at the domain boundaries. In the general situation, two MXCD images obtained at different extractor voltages are required. In specific cases, however, it suffices to consider a single image, if it is deformed by the stray magnetic fields compared to a known object geometry. The object geometry means its real shape, scratches or other defects. It is also possible to deposit a paramagnetic film structured in the form of stripes or a grid as a reference on the ferromagnetic sample being investigated. Received: 2 August 2001 / Accepted: 6 September 2001 / Published online: 20 December 2001  相似文献   

17.
82 , Y@C82, and La@C82 in frozen solutions. We were able to determine the g tensors of these molecules by analysing magnetic field spectra at X-band (9.5 GHz) and W-band (94 GHz) frequencies. Moreover, in Y@C82 we have investigated the hyperfine interaction of the 89Y nuclear spin (I=1/2) with the electron spin on the C82 cage. The principal values of the hyperfine tensor A and the relative orientation of g and A tensors were determined by applying three- and four-pulse electron spin echo envelope modulation techniques (ESEEM). Received: 3 September 1997/Accepted: 10 November 1997  相似文献   

18.
The effects of uncertainties and errors in various constraints used in the analysis of multi-component life-time spectra of positrons annihilating in metals containing defects have been investigated in detail using computer simulated decay spectra and subsequent analysis. It is found that the errors in the fitted values of the main components lifetimes and intensities introduced from incorrect values of the instrumental resolution function and of the source-surface components can easily exceed the statistical uncertainties. The effect of an incorrect resolution function may be reduced by excluding the peak regions of the spectra from the analysis. The influence of using incorrect source-surface components in the analysis may on the other hand be reduced by including the peak regions of the spectra. A main conclusion of the work is that extreme caution should be exercised to avoid introducing large errors through the constraints used in the analysis of experimental lifetime data. Supported in part by the National Research Council of Canada  相似文献   

19.
本文利用X射线谱研究了吡嗪(C4H4N2)分子共价吸附于硅(100)面的几种吸附构型的几何结构和电子结构. 利用密度泛函理论结合团簇模型,对预测的吸附结构的碳K壳层(1s)X射线光电子能谱(XPS)和近边X射线吸收精细结构(NEXAFS)谱进行了模拟. 计算结果阐明了XPS和NEXAFS谱与不同吸附构型的对应关系. 与XPS谱相比,NEXAFS谱对所研究的吡嗪/硅(100)体系的结构有明显的依赖性,可以很好地用于结构鉴定. 根据碳原子的分类,研究了在NEXAFS光谱中不同化学环境下碳原子的光谱成分.  相似文献   

20.
Positron lifetime spectra were re-measured for a series of synthetic zeolites using a large time window of observation. Magnetic quenching experiments were also performed for the zeolites, and it has been confirmed that both the 4 and the 3 components are due to o-Ps. The annihilation rate of the third component, 3, showed a good correlation with the size of the largest voids, which is similar to the correlation reported for other compounds. However the annihilation rate of the longest-lived component, 4, showed a poor correlation with the void size. The 3 component has thus been assigned to o-Ps in the regular voids of the zeolites, and the 4 component to that escaped to inter-particle open spaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号