首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The extended canonical Noether identities and canonical first Noether theorem derived from an extended action in phase space for a system with a singular Lagrangian are formulated. Using these canonical Noether identities, it can be shown that the constraint multipliers connected with the first-class constraints may not be independent, so a query to a conjecture of Dirac is presented. Based on the symmetry properties of the constrained Hamiltonian system in phase space, a counterexample to a conjecture of Dirac is given to show that Dirac's conjecture fails in such a system. We present here a different way rather than Cawley's examples and other's ones in that there is no linearization of constraints in the problem. This example has a feature that neither the primary first-class constraints nor secondary first-class constraints are generators of the gauge transformation.  相似文献   

2.
The gauge symmetries of a constrained system can be deduced from the gauge identities with Lagrange method, or the first-class constraints with Hamilton approach. If Dirac conjecture is valid to a dynamic system, in which all the first-class constraints are the generators of the gauge transformations, the gauge transformations deduced from the gauge identities are consistent with these given by the first-class constraints. Once the equivalence vanishes to a constrained system, in which Dirac conjecture would be invalid. By using the equivalence, two counterexamples and one example to Dirac conjecture are discussed to obtain defined results.  相似文献   

3.
We quantize the chiral Schwinger model by using the Batalin-Tyutin formalism. We show that one can systematically construct the first-class constraints and the desired involutive Hamiltonian, which naturally generates all secondary constraints. Fora>1, this Hamiltonian gives the gauge invariant Lagrangian including the well-known Wess-Zumino terms, while fora=1 the corresponding Lagrangian has the additional new type of the Wess-Zumino terms, which are irrelevant to the gauge symmetry.  相似文献   

4.
李子平 《中国物理 C》1994,18(8):694-701
给出了场论中约束Hamilton系统规范生成元的构成,说明了生成元中与第一类约束相联系的系数之间的关系.基于相空间中的生成泛函,导出了相应正则形式的Ward恒等式.讨论了与混合陈-Simons拉氏量等价的场论模型中的应用.  相似文献   

5.
An algorithm for the construction of the generators of the gauge transformation of a constrained Hamiltonian system is given. The relationships among the coefficients connecting the first constraints in the generator are made clear. Starting from the phase space generating function of the Green function, the Ward identity in canonical formalism is deduced. We point out that the quantum equations of motion in canonical form for a system with singular Lagrangian differ from the classical ones whether Dirac's conjecture holds true or not. Applications of the present formulation to the Abelian and non-Abelian gauge theories are given. The expressions for PCAC and generalized PCAC of the AVV vertex are derived exactly from another point of view. A new form of the Ward identity for gauge-ghost proper vertices is obtained which differs from the usual Ward-Takahashi identity arising from the BRS invariance.  相似文献   

6.
We discuss the stationarity of generator G for gauge symmetries in two directions.One is to the motion equations defined by total Hamiltonian HT,and gives that the number of the independent coefficients in the generator G is not greater than the number of the primary first-class constraints,and the number of Noether conserved charges is not greater than that of the primary first-class constraints,too.The other is to the variances of canonical variables deduced from the generator G,and gives the variances of Lagrangian multipliers contained in extended Hamiltonian HE.And a second-class constraint generated by a first-class constraint may imply a new first-class constraint which can be combined by introducing other second-class constraints.Finally,we supply two examples.One with three first-class constraints (two is primary and one is secondary) has two Noether conserved charges,and the secondary first-class constraint is combined by three second-class constraints which are a secondary and two primary second-class constraints.The other with two first-class constraints (one is primary and one is secondary) has one Noehter conserved charge.  相似文献   

7.
Massive self-dual p-forms are quantized through the construction of an equivalent first-class system and then quantizing the resulting first-class system. The construction of the equivalent first-class system is achieved using the gauge unfixing and constraints conversion BF methods. The Hamiltonian path integral of the first-class system takes a manifestly Lorentz-covariant form.  相似文献   

8.
A manifestly covariant scheme in a Hamiltonian form of augmenting infinitely reducible first-class fermionic constraints (ICC1) up to irreducible constraints is proposed for a class of theories (including D=10 superstrings and superparticles in the covariant formulation). The modified formulation, which is obtained after the scheme is applied to a theory including only ICC1, contains irreducible first-class constraints and irreducible second-class constraints separated from them. Pis’ma Zh. éksp. Teor. Fiz. 63, No. 9, 673–678 (10 May 1996)  相似文献   

9.
We discuss the two-dimensional isotropic antiferromagnet in the framework of gauge invariance. Gauge invariance is one of the most subtle useful concepts in theoretical physics, since it allows one to describe the time evolution of complex physical system in arbitrary sequences of reference frames. All theories of the fundamental interactions rely on gauge invariance. In Dirac’s approach, the two-dimensional isotropic antiferromagnet is subject to second-class constraints, which are independent of the Hamiltonian symmetries and can be used to eliminate certain canonical variables from the theory. We have used the symplectic embedding formalism developed by a few of us to make the system under study gauge invariant. After carrying out the embedding and Dirac analysis, we systematically show how second-class constraints can generate hidden symmetries. We obtain the invariant second-order Lagrangian and the gauge-invariant model Hamiltonian. Finally, for a particular choice of factor ordering, we derive the functional Schröodinger equations for the original Hamiltonian and for the first-class Hamiltonian and show them to be identical, which justifies our choice of factor ordering.  相似文献   

10.
For the case of a first-class constrained system with equivariant momentum map, we study the conditions under which the double process of reducing to the constraint surface and dividing out by the group of gauge transformations G is equivalent to the single process of dividing out the initial phase space by the complexification GC of G. For the particular case of a phase space action that is the lift of a configuration space action, conditions are found under which, in finite dimensions, the physical phase space of a gauge system with first-class constraints is diffeomorphic to a manifold imbedded in the physical configuration space of the complexified gauge system. Similar conditions are shown to hold for the infinite-dimensional example of Yang-Mills theories. As a physical application we discuss the adequateness of using holomorphic Wilson loop variables as (generalized) global coordinates on the physical phase space of Yang-Mills theory.  相似文献   

11.
The dynamics of a system of relativistically interacting particles is determined by a set of constraints, some combination of which has been frequently identified with the Hamiltonian. These constraints differ from the generators of the Poincaré transformations, among whichp 0 generates translations along the time axis and hence is to be considered as the energy of the system. There are thus grounds for consideringP 0 as the appropriate Hamiltonian. In this paper we establish a close relationship between transformations generated by the constraints and those generated by the Poincaré generators. In particular we find that the true Hamiltonian is a rather complicated but well-defined function ofp 0 and all the constraints. We show that the generators of the entire algebra of the Poincaré group can be realized in such a fashion that the Hamiltonian is correctly included among them, and such that particle world lines in Minkowski space-time generated by this Hamiltonian transform correctly under the Poincaré group.This work was partially supported by the National Science Foundation Grant No. PHY 79-0887 to Syracuse University and by Grant No. PHY 79-09405 to Yeshiva University.  相似文献   

12.
We consider in detail the gauge invariance constraints in Hamiltonian lattice gauge theories, focusing mainly on pureSU(2) Yang-Mills theory in 2+1 dimensions. We present matrix and partial differential representations of the Hamiltonian in which all gauge constraints have been taken fully into account. The applicability of this formulation is demonstrated on small lattices.  相似文献   

13.
We show that it is possible to formulate the most general first-class gauge algebra of the operator formalism by only using BRST-invariant constraints. In particular, we extend a previous construction for irreducible gauge algebras to the reducible case. The gauge algebra induces two nilpotent, Grassmann-odd, mutually anti-commuting BRST operators that bear structural similarities with BRST/anti-BRST theories but with shifted ghost number assignments. In both cases we show how the extended BRST algebra can be encoded into an operator master equation. A unitarizing Hamiltonian that respects the two BRST symmetries is constructed with the help of a gauge-fixing boson. Abelian reducible theories are shown explicitly in full detail, while non-Abelian theories are worked out for the lowest reducibility stages and ghost momentum ranks.  相似文献   

14.
Schroedinger equation on a Hilbert space H, represents a linear Hamiltonian dynamical system on the space of quantum pure states, the projective Hilbert space PH. Separable states of a bipartite quantum system form a special submanifold of PH. We analyze the Hamiltonian dynamics that corresponds to the quantum system constrained on the manifold of separable states, using as an important example the system of two interacting qubits. The constraints introduce nonlinearities which render the dynamics nontrivial. We show that the qualitative properties of the constrained dynamics clearly manifest the symmetry of the qubits system. In particular, if the quantum Hamilton’s operator has not enough symmetry, the constrained dynamics is nonintegrable, and displays the typical features of a Hamiltonian dynamical system with mixed phase space. Possible physical realizations of the separability constraints are discussed.  相似文献   

15.
We perform a Hamiltonian analysis of general bimetric gravity. We determine the four first class constraints that are generators of the diagonal diffeomorphism. We further analyze the remaining constraints and we present evidence that these constraints should be second class constraints in order to have a theory with the Hamiltonian constraint as the first class constraint.  相似文献   

16.
We consider the Hamiltonian formulation of constrained dynamical systems with purely second-class constraints which flow from either one or two primary constraints, known as one-chain and two-chain systems, studied recently in detail by Mitra and Rajaraman, and quantize the theories using Dirac's procedure.  相似文献   

17.
We derive expressions for the conjugate momenta and the Hamiltonian for classical dynamical systems subject to holonomic constraints. We give an algorithm for correcting deviations of the constraints arising in numerical solution of the equations of motion. We obtain an explicit expression for the momentum integral for constrained systems.  相似文献   

18.
This article addresses the problem of computing the Gibbs distribution of a Hamiltonian system that is subject to holonomic constraints. In doing so, we extend recent ideas of Cancès et al. (M2AN 41(2), 351–389, 2007) who could prove a Law of Large Numbers for unconstrained molecular systems with a separable Hamiltonian employing a discrete version of Hamilton’s principle. Studying ergodicity for constrained Hamiltonian systems, we specifically focus on the numerical discretization error: even if the continuous system is perfectly ergodic this property is typically not preserved by the numerical discretization. The discretization error is taken care of by means of a hybrid Monte-Carlo algorithm that allows for sampling bias-free expectation values with respect to the Gibbs measure independently of the (stable) step-size. We give a demonstration of the sampling algorithm by calculating the free energy profile of a small peptide.  相似文献   

19.
S G Kamath 《Pramana》1992,38(1):11-20
The Hamiltonian formulation of the BRST method for quantizing constrained systems developed recently by Nemeschanskyet al is applied to the well-known problem of the conical pendulum in classical mechanics. The similarity of the system to a gauge theory wherein the two constraints serve as generators of local Abelian gauge transformations is also pointed out. The definition of the physical states of the system as a gauge theory and also as a BRST invariant theory is then discussed in some detail.  相似文献   

20.
Change and local spatial variation are missing in Hamiltonian general relativity according to the most common definition of observables as having 0 Poisson bracket with all first-class constraints. But other definitions of observables have been proposed. In pursuit of Hamiltonian–Lagrangian equivalence, Pons, Salisbury and Sundermeyer use the Anderson–Bergmann–Castellani gauge generator G, a tuned sum of first-class constraints. Kucha? waived the 0 Poisson bracket condition for the Hamiltonian constraint to achieve changing observables. A systematic combination of the two reforms might use the gauge generator but permit non-zero Lie derivative Poisson brackets for the external gauge symmetry of General Relativity. Fortunately one can test definitions of observables by calculation using two formulations of a theory, one without gauge freedom and one with gauge freedom. The formulations, being empirically equivalent, must have equivalent observables. For de Broglie-Proca non-gauge massive electromagnetism, all constraints are second-class, so everything is observable. Demanding equivalent observables from gauge Stueckelberg–Utiyama electromagnetism, one finds that the usual definition fails while the Pons–Salisbury–Sundermeyer definition with G succeeds. This definition does not readily yield change in GR, however. Should GR’s external gauge freedom of general relativity share with internal gauge symmetries the 0 Poisson bracket (invariance), or is covariance (a transformation rule) sufficient? A graviton mass breaks the gauge symmetry (general covariance), but it can be restored by parametrization with clock fields. By requiring equivalent observables, one can test whether observables should have 0 or the Lie derivative as the Poisson bracket with the gauge generator G. The latter definition is vindicated by calculation. While this conclusion has been reported previously, here the calculation is given in some detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号