首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
《Applied Surface Science》2001,169(1-2):140-146
Ion channeling and electrical characterization techniques have been used in order to study the effects of thermal annealing on phosphorus implanted silicon wafers. A low energy thermally activated process (0.15–0.28 eV) is clearly observed after annealing at low temperature (≤500 °C). This electrical activation mechanism is found to be well described by a local relaxation model involving point defect migration. It is shown that in order to achieve a complete electrical activation of the implanted impurities, an annealing must be performed at temperatures higher than 700 °C.  相似文献   

2.
A complex investigation of the structure and emission characteristics of linear-chain carbon is accomplished. This material is demonstrated to be stable at high temperature (700°C), and the thermal emission is shown to be governed by the Schottky mechanism with the material characteristics reaching record-breaking values: an emission threshold of 800 V/mm and a thermoionic work function of 0.43 eV. These values are found to arise during sp 1 carbon crystallization and vanish after its graphitization. The very low value of the work function of linear-chain carbon is theoretically substantiated.  相似文献   

3.
By studying the minority carrier lifetime in recently manufactured commercially available n‐ and p‐type float‐zone (FZ) silicon from five leading suppliers, we observe a very large reduction in the bulk lifetime when FZ silicon is heat‐treated in the range 450–700 °C. Photoluminescence imaging of these samples at the wafer scale revealed concentric circular patterns, with higher recombination occurring in the centre, and far less around the periphery. Deep level transient spectroscopy measurements indicate the presence of recombination active defects, including a dominant center with an energy level at ~Ev + 0.5 eV. Upon annealing FZ silicon at temperatures >1000 °C in oxygen, the lifetime is completely recovered, whereby the defects vanish and do not reappear upon subsequent annealing at 500 °C. We conclude that the heat‐treatments at >1000 °C result in total annihilation of the recombination active defects. Without such high temperature treatments, the minority carrier lifetime in FZ silicon is unstable and will affect the development of high efficiency (>24%) solar cells and surface passivation studies.  相似文献   

4.
Present report details an analysis of X-ray reflectivity (XRR) for solution processed NiO thin films on Si (100) substrates. The films were annealed at 700–1,000 °C for 1 h in air. XRR data indicated growth of SiO2 layer from ~8 nm at 700 °C to ~66 nm at 1,000 °C along with significant variation of electron density profile. X-ray photoelectron spectroscopy and X-ray diffraction studies were used as supporting studies for phase purity and oxidation states of the NiO thin films as well as interfacial SiO2 layer.  相似文献   

5.
The effect of preliminary (before irradiation) annealing of synthetic carbonate-containing hydroxyapatite powders on the formation of paramagnetic centers under γ-ray and ultraviolet irradiation has been investigated. Annealing of the samples has been performed in the temperature range from 100 to 700°C. It has been found that electron paramagnetic resonance spectra of radiation-induced defects depend substantially on the annealing temperature. The paramagnetic centers CO 2 ? dominate in the samples annealed to 250°C (γ-ray irradiation) and 500°C (ultraviolet irradiation). In the samples annealed above 400°C, other defects, in particular, the O? and CO 3 3? centers, play a significant role. Annealing at some temperatures leads to an increase in the radiation sensitivity of the material. The observed effects can be associated with the escape of molecular water from the annealed hydroxyapatite samples and with the corresponding transformation of the defect subsystem of the material.  相似文献   

6.
Simultaneous measurements of optical absorption and electron spin resonance of additively colored KCl crystals have been carried out during the optical bleaching ofF-centers at ?90°C. TheF-center resonance signal does not change in its significant properties e.g. line shape, line width,g-value, and saturation behavior, but it decreases proportional to the decrease of the opticalF-center absorption band. No ESR-signal due to theF′-center could be observed. The time dependence of theF?F′-center conversion has been investigated by ESR and optical measurements. It does not give any indication of a paramagnetism of theF′-center, too. The kinetics of the thermal decay of theF′-center at ?90°C have been studied. One can interpret the time dependence of this process, if one assumes that the mean lifetime of anF′-center depends on the distance of the nearest halogen ion vacancy. The expectation of life of theF′-centers therefore increases during the thermal decay, as the mean distance between remainingF′-centers and vacancies increases.  相似文献   

7.
Mechanical properties of pyrolysed wood: a nanoindentation study   总被引:1,自引:0,他引:1  
The present work focuses on changes of mechanical properties in pyrolysed spruce wood as a function of temperature up to 2400°C. Nanoindentation tests are used for the determination of mechanical properties at the scale of single wood cell walls. Hardness, indentation modulus and elasto-plastic/brittle behaviour of the carbonaceous residues are derived as function of pyrolysis temperature. Hardness values increase continuously by more than one order of magnitude to 4.5?GPa at 700°C. The indentation modulus shows complex changes with a minimum of 5?GPa around 400°C and a maximum of 40?GPa around 1000°C. The deformation induced by the indenter is largely visco-plastic in native wood, but it is almost purely elastic in the carbonaceous residue, with particular low values of the indentation ductility index around 700°C. A low density and a strongly cross-linked carbon structure may explain the mechanical behaviour at these intermediate temperatures. A final decrease of the modulus and a slight decrease of ductility for temperatures above 2000°C can be attributed to a continuous structural transition of the material towards graphite-like stacking of carbon sheets and to preferred carbon orientation along the wood cell axis.  相似文献   

8.
AnFe-V 2.5 at% foil was annealed at various temperatures in the range from 120°C to 1000° \(\bar C\) for 10 min and analysed by Transmission Mössbauer Spectroscopy (TMS) and Conversion Electron Mössbauer Spectroscopy (CEMS) after each thermal process. A computational method to fit the spectra to obtain a parameter related to the concentration of the alloy was studied and applied to the data. No surprising effects were found on the bulk measurements (TMS), but there is a clear decrease of the alloy concentration in the 550°C to 700°C annealing temperature range, observed for the surface analysis (CEMS measurements). The phenomenon was attributed to the preferential internal oxidation of vanadium atoms in this range of temperature. Probably some vanadium oxide decomposition occurs at higher temperatures, recovering the original state of the sample.  相似文献   

9.
To analyze the process of the ion-induced graphitization of a polycrystalline diamond, the surfacelayer conductivity and microstructure are studied experimentally after high-fluence irradiation with Ne+, Ar+, N+, and ions with energies of 20–30 keV at irradiation and heat-treatment temperatures ranging from 30 to 720°R in vacuum. After irradiation with argon ions at room temperature and subsequent heat treatment, the resistivity ? of a modified layer decreases exponentially with increasing treatment temperature T ht and reaches the graphite value ? at Tht = 700°R. Such a temperature T ht is insufficient for surface-layer graphitization by nitrogen ions. The increase in the diamond temperature under irradiation leads to a decrease in the ion-induced thermal graphitization temperature T g by several hundred degrees. It is found that the temperature T g is almost coincident with the corresponding temperature Ta of the dynamic annealing of radiation-induced damage in graphite. Analysis of the irradiated layer using Raman spectroscopy reveals the heterogeneous structure of the modified layer containing graphite and amorphous phases, the ratio between which correlates with the layer resistivity. Under argon-ion irradiation at diamond temperatures of 500°R or more, an increase in ? of the irradiated layer is observed, which is related to the formation of nanocrystalline graphite. This effect is not observed under nitrogen-ion irradiation.  相似文献   

10.
Co-atoms have been implanted into n-type GaAs single crystals up to a dose of 2×1015 atoms/cm2. Mössbauer Spectroscopy was used together with Proton Induced X-ray Excitation and Rutherford Backscattering Spectrometry in Channeling geometry to study the recovery of the GaAs-crystal from the implantation damage and the final lattice locations of the Co-atoms. Epitaxial regrowth of the GaAs was found to take place in the annealing temperature region from 300°–450°C. At 900°C rapid thermal annealing an epitaxial Co-phase was found at the surface with the Co-atoms partially blocking the GaAs <110> channel.  相似文献   

11.
The properties of gas-generating soils (GGS) in the process of biofermentation under anaerobic and aerobic conditions are studied. The degradation of organic matter (OM) in a soil under natural occurrence conditions (without free access of air oxygen) at temperatures from 10 to 12°C is demonstrated to proceed at a specific reaction rate of k = 0.096 year?1. The main phase of gas generation (biogas formation) is shown to take 15 years, with the content of methane in the biogas being 60?80 vol %. It has been established that, under the conditions of forced aeration of the GGS array, the specific reaction rate of OM degradation increases 10-fold, to 0.9673 year?1, with a nearly complete decomposition of OM taking 1.5?2.0 years. A prerequisite for achieving of the predicted result is the maintenance of the environment humidity at a level not lower than 50%. Application of an alternative method, a thermal treatment of GGS increases the degree of OM decomposition to 59% within 4 h at 200°C and to 75% within 2 h at 300°C. In this case, residual organic substances are carbonized in the course of thermal treatment, transforming into a material resistant to microbiological decomposition. In fact, after heating at 200?300°C, GGS becomes inert from the gas-geochemical point of view.  相似文献   

12.
We have studied MBE grown amorphous silicon, which was recrystallized at different temperatures for one hour, with a pulsed positron beam. A positron lifetime of 538±10 ps in the as-grown state is attributed to microvoids containing at least 10 vacancies. An incompletely recrystallized sample annealed at 500°C shows an additional long lifetime from ortho-positronium (o-Ps) pick-off annihilation. The o-Ps component disappears for samples, recrystallized at 700°C and above, and the defect lifetime steadily decreases with higher annealing temperature until a value of 310 ps is reached for the layer annealed at 1200°C. This value is explained by positron trapping at dislocations or small vacancy defects stabilized by dislocations or impurities.Paper presented at the 132nd WE-Heraeus-Seminar on Positron Studies of Semiconductor Defects, Halle, Germany, 29 August to 2 September 1994  相似文献   

13.
《Current Applied Physics》2018,18(8):886-892
Effects of annealing temperature (600–750 °C) on crystalline structure, the morphology and piezoresponse hysteresis loops of BaTiO3 nanofibers prepared by electrospinning are characterized by X-ray diffraction, scanning electronic microscopy, transmission electron microscope and piezoresponse force microscope. When the annealing temperature is 700 °C, the nanofibers become smoother and have a diameter of 100–300 nm. Meanwhile the typical butterfly-shaped amplitude loop and 180°phase change represents the best ferroelectric and piezoelectric properties at 700 °C. So the 700 °C was found to be optimum for good piezoelectric characteristics at annealing temperature of 600 °C–750 °C. In order to give more clear evolution of domain states at different external fields, the three dimensional topographic and phase images of the nanofiber at different temperatures are observed by piezoresponse force microscope. The 90° domain switching is observed during heating from room temperature to 125 °C and the domain switching tends to be stable when the temperature exceeds a critical value. The thermal stress due to the high temperatures is responsible for switching mechanism from the perspective of equilibrium state free energy. This work suggests that the temperature variation should be considered while designing the ferroelectric devices based on one dimensional material.  相似文献   

14.
Fast oxide-ion conductors La2Mo2-xWxO9 (x = 0–1) have been prepared using mechanochemical activation (MA) of starting oxides in a high-power planetary ball mill. Studies of La2Mo2-xWxO9 genesis and structural properties using thermal analysis, XRD, SEM, IR, and Raman spectroscopy have revealed that MA results in the formation of an amorphous precursor, while the cubic β-phase is formed after calcination at 700–900 °C. Due to a high dispersion of powders, high-density pellets of W-LAMOX ceramics have been obtained already after sintering at 950 °C. Their electrical conductivity measured by the impedance spectroscopy depends on the W concentration being sufficiently high (up to 5.6?10?3 S/cm at 630 °C) at temperatures below 650 °C.  相似文献   

15.
A layered perovskite GdBaCuFeO5+x (GBCuF) was developed as a cathode material for intermediate-temperature solid oxide fuel cells based on a proton-conducting electrolyte of stable BaZr0.1Ce0.7Y0.2O3?δ (BZCY). The X-ray diffraction results showed that GBCuF was chemically compatible with BZCY after co-fired at 1,000 °C for 10 h. The thermal expansion coefficient of GBCuF, which showed a reasonably reduced value (15.1?×?10?6 K?1), was much closer to that of BZCY than the cobalt-containing conductor. The button cells of Ni–BZCY/BZCY/GBCuF were fabricated and tested from 500 to 700 °C with humidified H2 (~3 % H2O) as a fuel and ambient oxygen as the oxidant. A high open-circuit potential of 1.04 V, maximum power density of 414 mW cm?2, and a low electrode polarization resistance of 0.21 Ω cm2 were achieved at 700 °C, with calculated activation energy (E a) of 128 kJ mol?1 for the GBCuF cathode. The experimental results indicated that the layered perovskite GBCuF is a good candidate for cathode material.  相似文献   

16.
We demonstrate a simple, low‐cost, and scalable process for obtaining uniform, smooth surfaced, high quality mono‐crystalline germanium (100) thin films on silicon (100). The germanium thin films were deposited on a silicon substrate using plasma‐assisted sputtering based physical vapor deposition. They were crystallized by annealing at various temperatures ranging from 700 °C to 1100 °C. We report that the best quality germanium thin films are obtained above the melting point of germanium (937 °C), thus offering a method for in‐situ Czochralski process. We show well‐behaved high‐κ /metal gate metal–oxide–semiconductor capacitors (MOSCAPs) using this film. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Backscattering yields of 1.5 MeV?He+ ions and low temperature photoluminescence (PL) spectra were measured in GaP crystals implanted with 200 keV?N+ ions as functions of ion-dose, temperature during implantation and annealing temperature after implantation. Backscattering results indicate that hot implantation at 500°C greatly reduces radiation damage. The PL intensities of NN lines become maximum in the sample implanted with N+ ions of 3 × 1014cm?2 at 500°C, and annealed at 1000°C for 1 hr with aluminum glass. The PL intensity is comparable to that of the nitrogen-doped sample during liquid phase epitaxy which is widely accepted as the best method of introducing nitrogen into GaP crystals. In the case of 500°C—hot implantation, the radiation damage produced during implantation is annealed out at 700 ~ 800°C and the implanted nitrogen substitutes for the phosphorous sites after annealing at 900 ~ 1000°C. Some kinds of defects or strains remain around the NN centers even in implanted samples with a maximum PL efficiency. These defects or strains don't seem to reduce the PL efficiency. In the case of room temperature implantation, PL efficiency decreases to one-hundredth or one-thousandth due to the formation of the non-crystalline state compared with hot implantation.  相似文献   

18.
In situ annealing within a neutron beam line and ex situ annealing followed by transmission electron microscopy were used to study the thermal stability of the texture, microstructure, and bi-metal interface in bulk nanolamellar Cu/Nb composites (h?=?18?nm individual layer thickness) fabricated via accumulative roll bonding, a severe plastic deformation technique. Compared to the bulk single-phase constituent materials, the nanocomposite is two orders of magnitude higher in hardness and significantly more thermally stable, e.g., no observed recrystallization in Cu at temperatures as high as 85% of the melting temperature. The nanoscale h?=?18?nm individual layer thickness is maintained up to 500°C, the lamellar structure thickens but is maintained up to 700°C, and recrystallization is suppressed even up to 900°C. With increasing temperature, the texture sharpens, and among the interfaces found in the starting material, the {112}Cu?||?{112}Nb interface with a Kurdjumov-Sachs orientation relationship shows the greatest thermal stability. Our results suggest that thickening of the individual layers under heat treatment coincides with thermally driven removal of energetically unfavorable bi-metal interfaces. Thus, we uncover a temperature regime that maintains the lamellar structure but alters the interface distribution such that a single, low energy, thermally stable interface prevails.  相似文献   

19.
Abstract

The present experimental study determined the thermal degradation stages for vegetable and chrome-tanned leathers (goat and sheep) at 90, 100, and 130?°C by using Fourier transform infrared spectroscopy (FTIR) and differential thermal analysis. Infrared spectra revealed that a temperature of 90?°C affected the adsorbed water band at 3400?cm?1. Moreover, this temperature slightly reduced the vibrations of amide II and amid III (1340?cm?1) confirming the preliminary decomposition of protein folds, but it is worth noting that the aliphatic side chains remained stable at this stage of aging. At 100?°C, there was a sharp rupturing in the phenolic-OH bond and side-by-side N–H vibrations decreased dramatically. The peak decomposition occurred at 130?°C, where the amide I and amide III intensities significantly increased, which can be considered indicative of protein unfolding. Those changes are substantiation of protein denaturation. Thermal analysis demonstrated that thermal aging significantly reduced the required temperature for the process of oxidation. The oxidation occurred at 217?°C in goat sample aged at 90?°C. Nevertheless, the reference sample suffered from oxidation at about 220?°C, while with increasing aging temperatures (at 100 and 130?°C), endothermic reactions were observed. Such reactions are usually associated with protein denaturation.  相似文献   

20.
Silver nanoparticles were synthesized with a chemical reduction method in the presence of polyvinylpyrrolidone as stabilizing agent. The thermal stability behavior of the silver nanoparticles was studied in the temperature range from 25 to 700°C. Thermal gravimetric analysis was used to measure the weight loss of the silver nanoparticles. Scanning electron microscopy and high‐resolution transmission electron microscopy were used to observe the morphology and the change in shape of the silver nanoparticles. In situ temperature‐dependent small‐angle X‐ray scattering was used to detect the increase in particle size with temperature. In situ temperature‐dependent X‐ray diffraction was used to characterize the increase in nanocrystal size and the thermal expansion coefficient. The results demonstrate that sequential slow and fast Ostward ripening are the main methods of nanoparticle growth at lower temperatures (<500°C), whereas successive random and directional coalescences are the main methods of nanoparticle growth at higher temperatures (>500°C). A four‐stage model can be used to describe the whole sintering process. The thermal expansion coefficient (2.8 × 10?5 K?1) of silver nanoparticles is about 30% larger than that of bulk silver. To our knowledge, the temperature‐driven directional coalescence of silver nanocrystals is reported for the first time. Two possible mechanisms of directional coalescence have been proposed. This study is of importance not only in terms of its fundamental academic interest but also in terms of the thermal stability of silver nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号