首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Excitation of acoustic radiation into the air from a low-frequency point source under water is investigated using plane wave expansion of the source spectrum and Rayleigh reflection/transmission coefficients. Expressions are derived for the acoustic power radiated into air and water as a function of source depth and given to lowest order in the air/water density ratio. Near zero source depth, the radiation into the water is quenched by the source's acoustic image, while the power radiated into air reaches about 1% of the power that would be radiated into unbounded water.  相似文献   

2.
Using the integral Fourier-transform technique, we obtain a solution in integral form to the problem of excitation of elastic waves in a homogeneous isotropic solid half-space and the bordering homogeneous gas by the time-dependent forces which are arbitrarily distributed in a solid over the plane parallel to the interface of the media. Different configurations of the force sources are analyzed from the viewpoint of excitation of different types of seismoacoustic waves. Expressions for the time-averaged radiated powers of the Stoneley wave at the gas–solid interface and the Rayleigh wave at the solid–vacuum interface as well as analytical expressions for the Rayleigh wave displacements, which are valid for large distances from the source, are obtained for the harmonic dependence of forces on time. Excitation of a Rayleigh wave by the point sources oriented vertically, i.e., along the normal to the surface of elastic half-space, and horizontally, i.e., parallel to this surface, is analyzed in detail. Analytical expressions for the Rayleigh-wave radiated power are obtained. The dependences of these powers on the source orientation and depth are derived. It is shown that the Rayleigh-wave radiated power decreases with distance between the point of the force application and the boundary and turns to zero for a source depth of about 17.5% of the wavelength of the transverse wave in the case of a horizontally oriented subsurface source and a medium with identical Lamé parameters λ and μ. This power increases and reaches a relative maximum when the source depth becomes equal to about 42.4% of the wavelength of the transverse wave and then exponentially falls off as the source depth increases. This maximum is about 5.5% of the surface-source radiated power.  相似文献   

3.
Active control of radiation from a piston set in a rigid sphere   总被引:2,自引:0,他引:2  
Active control of the sound radiated from a piston set in a rigid sphere with a set of control point sources around is considered in this paper, where the scattering sound field of the control sound from the rigid sphere has been taken into account to minimize the total radiated sound power. Analytic results of the sound power are obtained and numerical simulations show that it is possible to reduce the radiation from a small piston set in a rigid sphere similar to the size of a human head up to a certain frequency. It is found that the introduction of the scattering object makes significant differences from the active control without scattering objects. This being the case, the scattering object makes the active noise control easier. To increase the global reduction of sound-power output, the optimal number and locations of the control sources and the optimal number and locations of error sensors are discussed. Finally, experiments with one control source and one error sensor around a head simulator have been carried out to verify the simulation results.  相似文献   

4.
岳舒  侯宏  王谦 《声学学报》2020,45(2):169-175
为了解决波束形成声源识别过程中声源辐射声功率定量计算的问题,给出了阵型简洁、便于组合的线阵声强缩放模型。通过推导线阵的声强缩放系数,建立起线阵波束输出结果与声源辐射声功率之间的换算关系。无论是线阵还是平面阵的声强缩放方法,对于偏离阵列中心位置较远处的声源进行辐射声功率估算时都存在较为明显的误差。通过理论推导和仿真模拟计算,研究了同一单极子点声源在不同位置处的声功率估算偏差随频率、幅度的变化规律,发现该估算偏差只与声源偏离位置有关,而与声源自身的强度信息无关的结论,据此给出了相应的声功率估算修正方法。半消声室实验结果和声压法测量结果对比表明:修正后的线阵声强缩放方法用于中高频声源的辐射声功率计算时,单频声源的估算误差不超过1.0 dB,宽带声源的估算误差不超过1.8 dB。   相似文献   

5.
Based on the discovery that the majority of radiated energy of a stationary sound source in shallow water is into the air at infrasonic frequencies, the sound transmission into air from a point source moving underwater is investigated in this letter. It is found that a moving sound source can radiate more acoustic energy into the air than a stationary one and the amount of energy radiated into the air increases with the speed of the moving source. Simulations show that the sound transmission into air is dominated by the inhomogeneous waves generated by the moving source.  相似文献   

6.
It is sometimes important to know the sound power radiated from a sound source so that, for example, the solution noise abatement can be carried out on the basis of the sound power radiated.Measurement of the sound power in general is carried out in a reverberant enclosure. This measuring method is classed as an indirect one in that the sound power is obtained via the sound pressure level. Consequently, in order to determine the sound power radiated as precisely as possible, some measurement procedures for obtaining the space-average sound pressure have been devised. However, the procedure, which involves moving the measuring microphone from point to point, is extremely tedious. Accordingly, if the system from data acquisition to data processing is automated, the work required for obtaining the space-average sound pressure will be considerably reduced, as will the time required for processing the data.The development of an automatic measuring system for sound power is discussed and it is shown that the sound power obtained with the system devised agrees well with that obtained by more familiar means.  相似文献   

7.
向龙凤  孙超 《声学学报》2014,39(5):570-576
针对水声信道对舰船辐射噪声声传播的影响,进而导致声源级测量结果不准确的问题,提出了基于匹配场处理的舰船辐射噪声级估计方法。在海洋环境噪声为空间均匀高斯白噪声的假设下,当海洋环境参数已知、信噪比满足一定要求时,匹配场处理能有效地给出被测噪声源的位置信息及该位置处的能量响应。从能量估计角度出发,推导了声源位置处匹配场输出响应的能量修正因子计算公式,从理论上证明了匹配场处理在被测声源位置处输出响应与能量修正因子的乘积为真实声源级的最小方差无偏(MVU)估计。该方法首先选择合适的声场计算模型计算拷贝场向量,对接收到的辐射噪声信号进行匹配场处理,得出接收信号级和被测声源位置;其次利用该位置所对应的拷贝场向量替换能量修正因子公式中的真实信道传输函数以计算能量修正因子的估计值;最后由接收信号级与能量修正因子估计值相乘得出舰船辐射噪声声源级的MVU估计。针对典型的浅海水声信道,进行了计算机仿真试验,结果表明:该方法能有效地进行舰船辐射噪声测量,当信噪比满足一定要求时,测量得到的声源级与实际声源级相比,误差小于1 dB。   相似文献   

8.
This is the second of two companion papers in which the physics and detailed fluid dynamics of a flow excited resonance are examined. The approach is rather different from those previously used, in which stability theory has been applied to small wavelike disturbances in a linearly unstable shear layer, with an equivalent source driving the sound field which provides the feedback. In the approach used here, the physics of the flow acoustic interaction is explained in terms of the detailed momentum and energy exchanges occurring inside the fluid. Gross properties of the flow and resonance are described in terms of the parameters necessary to determine the behaviour of the feedback system. In this second paper it is shown that two relatively distinct momentum balances can be considered in the resonator neck region. One can be identified with the vortically induced pressure and velocity fluctuations and the other with the reciprocating potential flow. The fluctuating Coriolis force caused by the interaction of the potential and vortical flows is shown to be the only term in the linearized momentum equation which is not directly balanced by a fluctuating pressure gradient. This force provides the mechanism for the exchange of the mean energies associated with the mean and fluctuating momenta, respectively. A source and sink of energy are identified in which mean energy associated with fluctuating momentum is extracted from and returned to the mean flow, respectively. The imbalance between the source and sink is responsible for both the radiated acoustic power and the power carried away by the vortices as they convect downstream. This radiated acoustic power and vortically convected power, and the source and sink powers, are all of the same order of magnitude. With the vortex shedding and reciprocating potential flow “phase locked” the amplitude of the steady state oscillations is determined by the condition that the net power produced in the resonator neck (the source power less the sink power) is equal to the sum of the radiated acoustic power and that carried by the vortices.  相似文献   

9.
Propagations of an oblique electron thermal mode under the electron plasma frequency without boundary effects are investigated experimentally and theoretically in a magnetized plasma. The phase, ray, and group velocity surfaces of the electron thermal mode are obtained in a polar coordinate. The experimental observation of the electron mode radiated from a point source is found to be in fair accord with the theoretical wave fronts which are obtained from the ray velocity surface. Wave fronts and ray trajectories of an oblique electron thermal mode radiated from a point source are numerically obtained in an inhomogeneous magnetized plasma with a use of an electrostatic kinetic theory. The spatial numerical results are indicated mainly below the electron plasma and cyclotron frequencies. Reflections of the mode in the plasma density lower than the electron plasma frequency are made clear numerically.  相似文献   

10.
An essential step towards improving sound insulation is a reliable means of quantifying the performance. However, for various reasons sound insulation measurements at low frequencies are associated with relatively high uncertainty and wide variance values. The objective of this research is to develop a method of sound insulation measurement which complements the standard ISO 140 measurement methods by providing improved accuracy at low frequencies. In this paper part of the problem is considered, namely the measurement of power radiated into the receiver room. The ‘peak envelope method’ is based on mode theory and the measurement employs a pair of microphones in the receiver room and a calibrated volume velocity source. No reverberation time measurements are required. The theory is outlined and computer simulations and trial measurements are carried out in order to validate the theory. Good agreement in numerical and experimental validation is demonstrated. We conclude that the peak envelope method is suitable for the measurement of radiated sound power at modal frequencies where ISO 140 methods are poorly adapted. In order to obtain transmission loss, a measure of incident power in the source room will also be required, which will be the subject of future works.  相似文献   

11.
A problem on the excitation of seismoacoustic waves in a system of a homogeneous isotropic elastic halfspace covered with a liquid layer is solved in the case of action of a source of point harmonic force on the surface of an elastic medium. Integral expressions are obtained for the radiation powers averaged over a wave period for longitudinal and transverse waves in a solid. Mode excitation is analyzed in detail. Expressions describing parts of the mode powers radiated into a liquid layer and an elastic medium are obtained. Numerical analysis of radiation powers is conducted for spherical longitudinal and transverse waves as well as for the radiation powers of seismoacoustic modes in a solid halfspace and a liquid layer. It is determined that in the conditions characteristic of bottom rocks in the case, where the basin depth is several times and more larger than the sound’s wavelength, about 2/3 of the total power is radiated into a liquid.  相似文献   

12.
刘皓  雷成友  丁茫  李晓东 《应用声学》2014,33(2):177-183
变压器两侧常建有高大的防火墙,其从声学角度可视为刚性反射壁面,会改变变压器的辐射声场,进而影响变压器声功率测量结果。本文利用有限元、边界元等数值计算方法建立了变压器声辐射的仿真模型用以分析反射壁面对变压器声功率测量结果的影响,并通过实际测量验证了仿真计算所得结论。结果表明,反射壁面对变压器声功率测量结果的影响程度随反射壁面到变压器箱体距离增加而减弱,且当反射壁面距变压器箱体5 m以上时,其对变压器声功率基频及各谐波成份测量结果的影响均在2 dB以内。另外反射壁面对变压器噪声高频成份声功率测量结果的影响较大,而对100 Hz、200 Hz等低频成份测量结果影响较小,基本低于3 dB。  相似文献   

13.
We consider the radiation from oscillating electric and magnetic dipoles moving with constant velocity directed parallel or antiparallel to the velocity of the surrounding medium. It is assumed that the medium in its rest frame is isotropic and has no spatial dispersion. We obtain expressions for the spectral density of the radiated power. In the case of a nondispersive medium, algebraic expressions for the total radiated power in the regime of “subluminal relative motion” are also obtained. In particular, it is shown that the energy loss of a source is negative if it moves in the direction of the superluminal motion of the medium and the source velocity is somewhat smaller than the medium velocity. It is noted that this phenomenon takes place for a smaller difference between the velocities of the source and the medium compared with a similar phenomenon for nonoscillating sources. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 50, No. 4, pp. 316–328, May 2007.  相似文献   

14.
岳舒  侯宏  于佳雨  王谦 《声学学报》2021,46(2):246-254
为了解决水下声源辐射声功率难以计算的问题,利用线阵声强缩放方法在波束形成声源识别的基础上,根据波束输出结果与声源辐射声功率之间的换算关系来获得相应的声功率.为了提高线阵声强缩放方法的水下声功率估算精度,给出了一定动态范围限制的主瓣区域积分方法,并通过仿真验证了该方法的有效性.在消声水池中开展了水下声功率估算的实验研究....  相似文献   

15.
The moving-source approach used by Morfey and Tanna for broad-band sound radiation from a point force in circular motion is adopted in this paper to evaluate the sound radiated in the far field due to point sources of random time variation rotating uniformly in a circle at subsonic speed. It is shown that the sound pressure results (overall and spectral density) for the volume velocity source can be easily extracted from the corresponding results for a rotating point force. An expression for the sound field of a point volume displacement source in arbitrary motion is derived and this is applied to the special case of uniform circular motion. The effects of acceleration of the sources due to circular motion on the radiated sound are established. Applications include noise from tip jet rotors, compressors and marine propellers.  相似文献   

16.
The analysis of the EM radiation from a single charge shows that the radiated power depends on the retarded acceleration of the charge. Therefore for consistency, an accelerated charge, free from the influence of external forces, should gradually lose its acceleration, until its total energy is radiated. Calculations show that the self force of a charge, which compensates for its radiation, is proportional to the derivative of the acceleration. However, when using this self force in the equation of motion of the charge, one gets a diverging solution, for which the acceleration runs away to infinity. This means that there is an inconsistency in the solution of the single charge problem. However, in the construction of the conserved Maxwell charge density, there is implicitly an integral over the corresponding world line which corresponds to a collection of charged spacetime events. One may therefore consistently think of the “self force” as the force on a charge due to another charge at the retarded position. From this point of view, the energy is evidently conserved and the radiation process appears as an absorbing resistance to the feeding source. The purpose of this work is to learn about the behavior of single charges from the behavior of a real current, corresponding to the set of charges moving on a world line, and to study the analog of the self force of a charge associated with the radiation resistance of a continuum of charges.  相似文献   

17.
Spatial behaviors of mode-converted electron Bernstein waves at the upper hybrid layer in an inhomogeneous magnetized plasma are investigated experimentally and theoretically when the radiated source is located outside the upper hybrid layer. The theoretical spatial field patterns in two dimensions which include the mode-converted cyclotron harmonic wave radiated from a point source are found to be in near accord with the experimental results.  相似文献   

18.
Reduction of sound radiation by using force radiation modes   总被引:1,自引:0,他引:1  
The location of a vibration source within a machine is sometimes found to have a significant effect upon its radiated acoustic power. It is known that a simple reduction of vibration cannot always reduce the radiated acoustic power, so that treatments based on analysis of a structure’s vibration modes are not always effective. At the same time, radiation mode analysis is known to be a powerful tool for interpreting sound radiation since those modes are independent of a structure’s surface vibration. However, knowledge of the radiation modes alone cannot be used directly to understand the relationship between vibration source location and acoustic power radiation. In this paper, it is shown that the radiation mode concept can be extended to understand the relationship between acoustic power and driving force distribution by considering the product of the structure’s mobility matrix and the radiation modes: the resulting functions are here defined to be force radiation modes (frad-modes). An example is presented in which the acoustic power radiated by a simply-supported, baffled beam is reduced by using guidance provided by the structure’s force radiation modes. The results demonstrate that the force radiation modes can be used to guide the reduction of radiated acoustic power by changing the driving force location without the need to perform additional calculations or experiments.  相似文献   

19.
The effectiveness of reversed wave focusing in a random atmosphere was studied by using the phase approximation of geometrical optics as well as in an oceanic waveguide using the method of normal modes and horizontal rays. Calculations were made for the turbulence fluctuation obeying a structural function with a 2/3 power law. To provide focusing of the field radiated by a point-like source into a given point, a correction phase factor, determined for a homogeneous medium, was introduced. We estimated that the size of a region near the location of the source wherein the intensity of a field, focused in accordance with the free-space algorithms, decreased due to random inhomogeneities to no less than half of its original size. The minimal number of reference sources necessary for effective focusing at any point in the region under consideration was estimated.  相似文献   

20.
An analytical model of the sound power radiated from a flat plate airfoil of infinite span in a 2D turbulent flow is presented. The effects of stagger angle on the radiated sound power are included so that the sound power radiated upstream and downstream relative to the fan axis can be predicted. Closed-form asymptotic expressions, valid at low and high frequencies, are provided for the upstream, downstream, and total sound power. A study of the effects of chord length on the total sound power at all reduced frequencies is presented. Excellent agreement for frequencies above a critical frequency is shown between the fast analytical isolated airfoil model presented in this paper and an existing, computationally demanding, cascade model, in which the unsteady loading of the cascade is computed numerically. Reasonable agreement is also observed at low frequencies for low solidity cascade configurations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号