首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In this work, we report a ferroelectric memory with strained‐gate engineering. The memory window of the high strain case was improved by ~71% at the same ferroelectric thickness. The orthorhombic phase transition (from ferroelectric to anti‐ferroelectric transition) plays a key role in realizing negative capacitance effect at high gate electric field. Based on a reliable first principles calculation, we clarify that the gate strain accelerates the phase transformation from metastable monoclinic to orthorhombic and thus largely enhances the ferroelectric polarization without increasing dielectric thickness. This ferroelectric strain technology shows the potential for emerging device application.

  相似文献   


4.
Silicene, a promising candidate for future electronic devices, has been fabricated only on supporting substrates as silicon atom prefers to form the sp3 hybridization structure. Therefore, it's important to search more stable two‐dimensional (2D) silicon allotropes and several 2D silicon allotropes have been proposed recently. In this work, we predict a new type of 2D silicon allotrope (called OTDS) based on ab initio structure, phonon‐mode and molecular dynamics calculations. OTDS has the in‐plane octagonal tiling (OT) pattern with dumbbell‐like structures and silicon atoms in OTDS are four‐ and three‐coordinated. OTDS is a semiconductor with a large band gap (about 1.5 eV by HSE calculation) and the band gap can be tuned effectively by the in‐plane strain.

Perspective and side views of the atomic structure of OTDS.  相似文献   


5.
The operation characteristics of nominal bilayer (BL) organic solar cells (OSCs), the active layers (ALs) of which consisted of sequentially casted bottom P3HT donor and top ICBA acceptor layers, resembled those of OSCs with bulk heterojunction (BHJ) ALs. Optical analysis and device simulations showed that such resemblance can be attributed to a similarity in the micromorphology of ALs; as‐deposited BL‐type ALs transformed spontaneously into BHJ‐type ALs. The inclusion of P3HT nanowires (NWs) in the donor layers resulted in different AL micromorphology and consequently a larger power conversion efficiency. Separate assessment of the exciton generation and charge–carrier transport and/or extraction showed that the contribution of P3HT NWs was more prominent in optical effects.

  相似文献   


6.
Surface‐diffusion‐induced spontaneous Ga incorporation process is demonstrated in ZnO nanowires grown on GaN substrate. Crucially, contrasting distributions of Ga atoms in axial and radial directions are experimentally observed. Ga atoms uniformly distribute along the ~10 μm long ZnO nanowire and show a rapidly gradient distribution in the radial direction, which is attributed substantially to the difference between surface and volume diffusion. The understanding on the incorporation process can potentially modulate doping and properties in semiconductor nanomaterials.

  相似文献   


7.
A promising flexible X‐ray detector based on inorganic semiconductor PbI2 crystal is reported. The sliced crystals mechanically cleaved from an as‐grown PbI2 crystal act as the absorber directly converting the impinging X‐ray photons to electron hole pairs. Due to the ductile feature of the PbI2 crystal, the detector can be operated under a highly curved state with the strain on the top surface up to 1.03% and still maintaining effective detection performance. The stable photocurrent and fast response were obtained with the detector repeated bending to a strain of 1.03% for 100 cycles. This work presents an approach for developing efficient and cost‐effective PbI2‐based flexible X‐ray detector.

  相似文献   


8.
In bilayer graphene, mutual rotation of layers has strong effect on the electronic structure. We theoretically study the distribution of electron density in twisted bilayer graphene with the rotation angle of 21.8° and find that regions with AA‐like and AB‐like stacking patterns separately contribute to the interlayer low‐energy van Hove singularities. In order to investigate the peculiarities of interlayer coupling, the charge density map between the layers is examined. The presented results reveal localization of π‐electrons between carbon atoms belonging to different graphene layers when they have AA‐like stacking environment, while the interlayer coupling is stronger within AB‐stacked regions.

Charge density map for bilayer graphene with a layer twist of 21.8° (interlayer region).  相似文献   


9.
An optimized test structure to study rear surface passivation in Cu(In,Ga)Se2 (CIGS) solar cells by means of photoluminescence (PL) is developed and tested. The structure – illustrated in the abstract figure – is examined from the rear side. To enable such rear PL assessment, a semi‐transparent ultra‐thin Mo layer has been developed and integrated in place of the normal rear contact. The main advantages of this approach are (i) a simplified representation of a rear surface passivated CIGS solar cell is possible, (ii) it is possible to assess PL responses originating close to the probed rear surface, and (iii) a stable PL response as a function of air exposure time is obtained. In this work, PL measurements of such structures with and without rear surface passivation layers have been compared, and the measured improvement in PL intensity for the passivated structures is associated with enhanced CIGS rear interface properties.

  相似文献   


10.
The α‐PbO2‐type TiO2 is synthesized under high‐pressure and high‐temperature environment and it shows higher photocatalytic activity as compared to rutile and anatase under UV irradiation. The reduction in α‐PbO2‐type TiO2 induces visible‐light photocatalytic activity. These results indicate that α‐PbO2‐type TiO2 is an important candidate material for use in a photocatalytic matrix.

  相似文献   


11.
Perovskite‐like metal‐organic frameworks (MOFs) are hybrid materials of high interest for their potential in information storage technology, as Pb‐free substitutes for the widely used lead zirconate titanate (PZT) family of multiferroics. We report here a new, microwave‐assisted method of synthesis for perovskite‐like MOFs, which exploits the advantages of rapid and volumetric heating by microwaves in order to achieve synthesis within minutes, compared to days required by previously reported methods. The preliminary results demonstrate a broad control over the size and morphology of the products, by minor changes in the reaction conditions. An investigation of the effects of size and morphology on the magnetic and dielectric properties is presented here.

  相似文献   


12.
Using the recently suggested method of processing the data on external quantum efficiency as a function of output optical power, we have estimated the dependence of light extraction efficiency of high‐power light‐emitting diodes (LEDs) on their emission wavelength varied between 425 nm and 540 nm. The extraction efficiency is found to increase with the wavelength from ~80% to ~85% in this spectral range and to correlate with the wavelength dependence of reflectivity of the large‐area p‐electrode being the essential unit of the LED chip design. The correlation found identifies the incomplete reflection of emitted light from the electrode as the major mechanism eventually controlling the spectral dependence of the efficiency of light extraction from the LEDs.

  相似文献   


13.
We present a detailed temperature‐dependent (4–300 K) spectroscopic study of DyMnO3 single crystals with distorted perovskite structure. Energies of 36 crystal‐field levels of Dy3+ in paramagnetic DyMnO3 were determined. The Dy3+ ground Kramers doublet does not split at and splits below Tlock = 18 K. The splitting grows fast at temperatures near and reaches Δ0 ≈ 11 ± 2 cm–1 at 4 K. Using the experimental temperature dependence Δ0(T), we calculate the dysprosium magnetic moment mDy(T) and the dysprosium contribution into specific heat and magnetic susceptibility. Analysing all the experimental data, we conclude that the Dy–Mn interaction is of the Dzyaloshinskii–Moriya type.

Intensity map in the temperature–wave number coordinates for a spectral line corresponding to the f–f transition of Dy3+ in DyMnO3 and a scheme of the splitting of the Dy ground Kramers doublet. Arrows represent Dy magnetic moments.  相似文献   


14.
We theoretically study the strain effect on the Casimir interactions in graphene based systems. We found that the interactions between two strained graphene sheets are strongly dependent on the direction of stretching. The influence of the strain on the dispersion interactions is still strong in the presence of dielectric substrates but is relatively weak when the substrate is metallic. Our studies would suggest new ways to design next generation devices.

  相似文献   


15.
Transition absorption of a photon by an electron passing through a boundary between two media with different permittivities is described both classically and quantum mechanically. Transition absorption is shown to make a substantial contribution to photoelectron emission at a metal/semicon‐ductor interface in nanoplasmonic systems, and is put forth as a possible microscopic mechanism of the surface photoelectric effect in photodetectors and solar cells containing plasmonic nanoparticles.

  相似文献   


16.
A theory of dielectric response of water under nanoscale confinement was long overdue. This work addresses the problem by establishing a relation between dielectric response and hydrogen‐bond frustration subsumed in a non‐Debye polarization term. The results hold down to the single‐molecule contribution and are validated vis‐à‐vis experimental measurements on a system where dielectric modulation entails removal of a single water molecule. The frustrated dielectric response down to molecular scales is assessed by contrasting two enantiomeric ligands in association with the same protein, with the complexes differing in the removal of a single interfacial water molecule.

  相似文献   


17.
Device applications involving topological insulators (TIs) will require the development of scalable methods for fabricating TI samples with sub‐micron dimensions, high quality surfaces, and controlled compositions. Here we use Bi‐, Se‐, and Te‐bearing metalorganic precursors to synthesize TIs in the form of nanowires. Single crystal nanowires can be grown with compositions ranging from Bi2Se3 to Bi2Te3, including the ternary compound Bi2Te2Se. These high quality nanostructured TI compounds are suitable platforms for on‐going searches for Majorana fermions (Mourik et al., Science 336 , 1003 (2012) and Cook et al., Rev. B 86 , 155431 (2012) [1, 2]).

  相似文献   


18.
Pentacene thin‐film transistor with high‐κ TaLaO as gate dielectric has been fabricated and shows a carrier mobility of 0.73 cm2/V s, much higher than that based on pure La2O3 (0.43 cm2/V s) due to the smoother surface of the TaLaO film and thus larger pentacene islands grown on it in the initial stage. Moreover, among various times for fluorine‐plasma treatment on the TaLaO gate dielectric, 100 seconds result in the highest carrier mobility of 1.12 cm2/V s due to (1) smoothest oxide surface achieved by fluorine passivation of oxide traps, as measured by AFM and supported by smallest sub‐threshold swing and lowest low‐frequency noise; (2) the largest pentacene grains grown on the smoothest oxide surface, as demonstrated by AFM.

  相似文献   


19.
A mechanism of amplification of surface plasmon polaritons due to the transfer of electromagnetic energy from a drift current wave into a far‐infrared surface wave propagating along a semiconductor‐dielectric boundary in waveguide geometry is proposed. A necessary condition of the interaction of these waves is phase matching condition, i. e., when the phase velocity of the surface wave approaches the drift velocity of charge carriers. It is shown that in the spectral region of the surface plasmon polariton slowing‐down its amplification coefficient can reach values substantially exceeding the ohmic loss coefficient of the surface wave in the structure.

  相似文献   


20.
Uniform, graded and spaced arrays of 3 μm triangular antidots in pulsed laser deposited YBa2Cu3O7 (YBCO) superconducting thin films are compared by examining the improvements in the critical current density they produced. The comparison is made to establish the role of their lithographically defined (non‐)uniformity and the effectiveness to control and/or enhance the critical current density. It is found that almost all types of non‐uniform arrays, including graded ones enhance over the broad applied magnetic field and temperature range due to the modified critical state. Whereas uniform arrays of antidots either reduce or produce no effect on compared to the original (as‐deposited) thin films.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号