首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Growth of the turbulent boundary layer over a flat plate rotating about an axis parallel to the leading edge is considered in which the axial length (or span) is contained between rotating radial end-plates (the hub and shroud, in effect, of a centrifugal impeller). The problem of the influence of the cross-flows in the boundary layers on the end-plates as they affect the blade boundary layer is considered. The latter is treated as a three-dimensional problem and the dependence of the solution on the boundary conditions is discussed. The integral equations of this boundary layer reduce to a pair of quasi-linear partial differential equations which are weakly elliptic, parabolic, or weakly hyperbolic according to the rotation number. When the equations are exactly parabolic and the boundary layers remain thin it is shown that the end-plate boundary layers can have no influence upon the blade boundary layer if the flow is initially radial; separation of the end-plate cross flows takes place in the corners.  相似文献   

2.
A numerical investigation in the approximation of boundary layer theory has been made of the development of the flow near the surface of a rotating plate in a two-dimensional flow with rectilinear streamlines perpendicular to the leading edge in a rotating coordinate system attached rigidly to the plate. In an earlier investigation [1] using the approximate method of integral relations, Kurosaka obtained and described quantitatively a transition from a Blasius boundary layer to an Eckmann boundary layer in the form of three-dimensional oscillations. The solution described in the present paper confirms the oscillatory nature of the development of the boundary layer, but the quantitative results differ strongly from Kurosaka's.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 154–157, May–June, 1982.  相似文献   

3.
A Blasius laminar boundary layer and a steady turbulent boundary layer on a flat plate in an incompressible fluid are considered. The spectral characteristics of the Tollmien—Schlichting (TS) and Squire waves are numerically determined in a wide range of Reynolds numbers. Based on the spectral characteristics, relations determining the three–wave resonance of TS waves are studied. It is shown that the three–wave resonance is responsible for the appearance of a continuous low–frequency spectrum in the laminar region of the boundary layer. The spectral characteristics allow one to obtain quantities that enter the equations of dynamics of localized perturbations. By analogy with the laminar boundary layer, the three–wave resonance of TS waves in a turbulent boundary layer is considered.  相似文献   

4.
祖国君  陈矛章 《力学学报》1992,24(6):671-679
本文以量级分析为基础,建立了一般曲线坐标系上的三维旋转边界层方程。对旋转在边界层中的影响进行分析之后,提出了一个能够处理壁面法向压力梯度不为零问题的压力梯度迭代方法。在传统的Box法的基础上发展了一套完整的求解三维旋转边界层的方法和程序,并对螺旋面、压气机转子叶面以及圆柱面上的旋转边界层进行了计算,与他人的计算和实验的对比分析表明,该方法和程序是正确的,可用于求解任意几何物面上的三维旋转边界层。  相似文献   

5.
We consider the problem of laminar gas motion in the boundary layer on a solid of revolution oriented at an angle of attack. The parametric method of L. G. Loitsyanskii is used for the solution. The effect of the external current and the form of the body are considered by introduction of three series of parameters. A corresponding system of universal equations is obtained, which is then numerically integrated over a wide range of parameters and their combinations. The results permit evaluation of the general principles of flow in a boundary layer on a solid of revolution in an oblique gas flow.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 32–41, July–August, 1973.  相似文献   

6.
A study is made of the nonstationary laminar boundary layer on a sharp wedge over which a compressible perfect gas flows; the wedge executes slow harmonic oscillations about its front point. It is assumed that the perturbations due to the oscillations are small, and the problem is solved in the linear approximation. It is also assumed that the thickness of the boundary layer is small compared with the thickness of the complete perturbed region. Then in a first approximation the influence of the boundary layer on the exterior inviscid flow can be ignored, and the parameters on the outer boundary of the boundary layer can be taken equal to their values on the body for the case of inviscid flow over the wedge. They are determined from the solution to the inviscid problem that is exact in the framework of the linear formulation. The wall is assumed to be isothermal. The dependence of the viscosity on the temperature is linear. Under these assumptions, the problem of calculating the nonstationary perturbations in the boundary layer on the wedge is a self-similar problem.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 146–151, July–August, 1980.  相似文献   

7.
The stability of a laminar boundary layer of a power-law non-Newtonian fluid is studied. The validity of the Squire theorem on the possibility of reducing the flow stability problem for a power-law fluid relative to three-dimensional disturbances to a problem with two-dimensional disturbances is demonstrated. A numerical method of integrating the generalized Orr-Sommerfeld equation is constructed on the basis of previously proposed [1] transformations. Stability characteristics of the boundary layer on a longitudinally streamlined semiinfinite plate are considered.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 101–106, January–February, 1976.  相似文献   

8.
The equations of thermal convection in a rotating plane horizontal layer of nonequilibrium turbulent fluid are obtained, the system of equations is linearized and the boundary value problem is formulated. Some general properties of the perturbation spectrum are found and a solution, which includes the classical solution in the absence of turbulence as a limiting case, is obtained.Novosibirsk. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 62–70, November–December, 1994.  相似文献   

9.
The problem of the laminar boundary layer formed on the surface of a semiinfinite plate with a perpendicular semi-infinite circular cylinder in a uniform steady incompressible flow normal to the leading edge is considered. Near its sharp edge the plate has a stationary part and, located at a finite distance further downstream, a part of the surface moving downstream at a constant velocity. The first-order boundary layer equations are solved numerically by an implicit finite-difference method. The effect of the moving wall on the variation of the dimensions of the separation zone ahead of the obstacle over a broad range of the governing parameters and flow characteristics is investigated. The flow in the laminar boundary layer on the surface of a plate ahead of such an obstacle was calculated in [1, 2] without motion of the wall. Data on the structure of the separated flow are given in [3].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 49–53, November–December, 1990.  相似文献   

10.
A study is made of the steady axisymmetric flow of a viscous fluid between two cones rotating in opposite ways round a common axis. It is shown that as in the case of the flow of fluid swirled by plane disks rotating at different speeds [1], there can be two regimes of motion in the system: a Batchelor regime with quasirigid rotation of the fluid outside the boundary layers [2] and a Stewartson regime in which the azimuthal flow is concentrated only in the boundary layers [3]. In the Stewartson regime, a boundary layer analogous to that in the single disk problem (see, for example, [4–6]) forms in the region of each cone far from the apex. For the flows outside the boundary layers, simple expressions are found which make it possible to obtain a conception of the circulation of the fluid as a whole. With minor alterations, the results can be applied to the case of the rotation of other curved surfaces.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 58–64, March–April, 1985.The author thanks A. M. Obukhov for suggesting the subject and for his interest in the work, and A. V. Danilov and S. V. Nesterov for useful discussions.  相似文献   

11.
K. S. Reent 《Fluid Dynamics》1991,26(3):454-462
The problem of subsonic unsteady ideal-gas flow over two annular blade rows of thin lightly loaded blades rotating one relative to the other is solved within the framework of linear small perturbation theory. As in the case of the interaction of two-dimensional cascades [1], the problem reduces to an infinite system of singular integral equations for the harmonic components of the oscillations in the distribution of the unknown aerodynamic load on one blade of each row. The system of integral equations for a finite number of harmonics is solved numerically by the collocation method. The kernels of the integral equations are regularized on the basis of the method proposed in [2].Translated from Izvestiya Akademii Nauk.SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 165–174, May–June, 1991.The author is grateful to A. A. Osipov and K. K. Butenko for their considerable assistance in the preparation of this paper.  相似文献   

12.
The problem under consideration is that of the stationary shape of the free surface of a viscous fluid in a steadily rotating horizontal cylinder. In the majority of investigations of this problem the thickness of the fluid layer coating the inner surface of the cylinder is assumed to be small [1–3]. The case of a near-horizontal free surface, with the bulk of the fluid at the cylinder bottom, was considered in [4], where, after considerable simplification, the governing equations were reduced to ordinary differential equations. In the present study the behavior of the free surface is investigated using a creeping flow approximation. The controlling parameters vary over a wide range. In the numerical computations a boundary element method was used. The numerical results have been confirmed experimentally.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 25–30, May–June, 1993.  相似文献   

13.
The plane problem of determination of the natural frequencies of small oscillations of a viscous liquid rotating in a partially filled cylindrical vessel under conditions of weight-lessness is examined. If the angular velocity of vessel rotation is sufficiently low, surface forces acting on the liquid-gas boundary prove to be of the same order as the centrifugal forces and significantly affect the oscillatory frequencies. Asymptotic formulas expressing the dependence of the oscillatory frequencies on the parameters of the problem are obtained by the boundary layer method, with the assumption that the ratio of viscous to centrifugal forces is low.Khar'kov. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkostii Gaza, No. 4, pp. 3–9, July–August, 1972.  相似文献   

14.
The present study is concerned with an analysis of gravitational and acoustic waves which are excited by a vibrational source deeply placed in a liquid covered by ice. An analysis of the rigidity characteristics of ice modeled by an elastic layer or by a Kirchhoff plate is done by factorization of the solution to the integral equation equivalent to an initially combined boundary value problem. The uncombined boundary condition is used to solve problems for unrestricted ice fields in [1–3], whereas combined conditions with vibrational sources positioned at the boundary of the medium are used in [4].Translated from Zhurnal Prikladnoi Mekhaniki, No. 3, pp. 125–129, May–June, 1986.  相似文献   

15.
A mathematical model of the hypersonic steady gas flow over the stagnation zone of an axisymmetric blunt body with given two-phase injection from the surface is proposed. The two-continuum model of a dusty gas [3] is used for describing the flow in the region of the wall. The problem is solved in the boundary layer and thin viscous shock layer approximations. On the basis of the numerical calculations the distribution of the parameters of the carrier and dispersed phases near the axis of symmetry is obtained. The similarity parameters determining the convective heat transfer are found. The stagnation point heat fluxes with and without particles are compared. The range of parameters on which particles can significantly reduce the heat transfer is determined.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.4, pp. 60–66, July–August, 1992.  相似文献   

16.
The effect of a wave traveling over the surface and suction-blowing in the form of a traveling wave on boundary layer stability and laminarturbulent transition is investigated. The perturbation parameters are assumed not to be related to the parameters of the Tollmien-Schlichting wave. The parameters corresponding to an increase in the critical Reynolds number by a factor of 2–2.5 are determined.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 109–115, May–June, 1988.The author is grateful to V. A. Kuparev for supplying the program for calculating the stability of the boundary layer.  相似文献   

17.
The article discusses the flow of a gas at the blade rim of an axial turbine, consisting of an external steady-state continuous flow of an ideal compressible liquid and a three-dimensional turbulent boundary layer of a compressible liquid at the end surfaces of the rim, averaged in a peripheral direction. It presents an example of a calculation of flow in fixed blades, with a different form of the meridional cross section. In a flow through the rim of a turbine machine between the convex and concave surfaces of adjacent blades there arises a transverse gradient of the static pressure. At the end surface in the boundary layer the lines of the flow are shifted toward the convex side of the profile, and a secondary transverse flow of the liquid arises [1–3]. The article discusses the following: an external two-dimensional steady-state adiabatic flow of an ideal compressible liquid at the surface S2, which can be taken as the mean surface of the interblade channel, with boundary lines at the peripheral and root end surfaces of the rim; a two-dimensional steady-state adiabatic flow of an ideal compressible liquid at the end surfaces of the rim between the convex and concave sides of the profiles [3, 4]; and a three-dimensional turbulent boundary layer, averaged in a peripheral direction at the end surfaces of the blade rim. The averaged boundary layer is calculated along one coordinate line s, and a simplified model of the quasi-three-dimensional flow is used. The coefficients of friction and heat transfer, and the inclination of the bottom flow lines are averaged.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 22–31, May–June, 1975.The author thanks G. Yu. Stepanov for posing the problem and evaluating the results.  相似文献   

18.
The problem of heat transfer in a turbulent asymptotic boundary layer with suction is solved in the framework of the monoharmonic model. The flow is one dimensional on the average, which is why it is chosen for investigation. The theoretically determined mean and pulsation characteristics of the flow, in particular the turbulent Prandtl number, agree with the experimental results for a boundary layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 74–79, January–February, 1981.  相似文献   

19.
A study is made of the flow of a compressible gas in a laminar boundary layer on swept-back wings of infinite span in a supersonic gas flow at different angles of attack. The surface is assumed to be either impermeable or that gas is blown or sucked through it. For this flow and an axisymmetric flow an analytic solution to the problem is obtained in the first approximation of an integral method of successive approximation. For large values of the blowing or suction parameters, asymptotic solutions are found for the boundary layer equations. Some results of numerical solution of the problem obtained by the finite-difference method are given for wings of various shapes in a wide range of angles characterizing the amount by which the wings are swept back and also the blowing or suction parameters. A numerical solution is obtained for the equations of the three-dimensional mixing layer formed in the case of strong blowing of gas from the surface of the body. The analytic and numerical solutions are compared and the regions of applicability of the analytic expressions are estimated. On the basis of the solutions obtained in the present paper and studies of other authors a formula is proposed for the calculation of the heat fluxes to a perfectly catalytic surface of swept-back wings in a supersonic flow of dissociated and ionized air at different angles of attack. Flow over swept-back wings at zero angle of attack has been considered earlier (see, for example, [1–4]) in the theory of a laminar boundary layer. In [5], a study was made of flow over swept-back wings at nonzero angle of attack at small and moderate Reynolds numbers in the framework of the theory of a hypersonic viscous shock layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 27–39, May–June, 1980.We thank G. A. Tirskii for a helpful discussion of the results.  相似文献   

20.
Self-similar solutions of the equations of a three-dimensional laminar boundary layer are of interest from two points of view. In the first place, they can be used to construct approximate calculating methods, making it possible to analyze several variants and to consider complex flows, in which it is impossible to neglect the interaction between the boundary layer and the external flow (for example, in the region of hypersonic interaction [1–3]). In the second place, the analysis of self-similar solutions permits clarifying the effect of individual parameters on one or another characteristic of the boundary layer and representing this effect in predictable form. One of the principal characteristics of a three-dimensional boundary layer, as also of a two-dimensional, is the coefficient of regeneration of the enthalpy. The value of this coefficient is needed for determining the temperature of a thermally insulated surface, as well as for finiing the real temperature (or enthalpy) head, which determines the value of the heat flux from a heated gas to the surface of the body around which the flow takes place. The article presents the results of calculations of the coefficient of regeneration of the enthalpy for locally self-similar solutions of the equations of a three-dimensional boundary layer, forming with flow around a cylindrical thermally insulated surface at an angle. It is clarified that the dependence of the coefficient of regeneration of the enthalpy on the determining parameters is not always continuous.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 60–63, January–February, 1973.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号