首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermolysis of [Ru(AsPh3)3(CO)H2] with the N-aryl heterocyclic carbenes (NHCs) IMes (1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene), IPr (1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) or the adduct SIPr.(C6F5)H (SIPr=1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene), followed by addition of CH2Cl2, affords the coordinatively unsaturated ruthenium hydride chloride complexes [Ru(NHC)2(CO)HCl] (NHC=IMes , IPr , SIPr ). These react with CO at room temperature to yield the corresponding 18-electron dicarbonyl complexes . Reduction of and [Ru(IMes)(PPh3)(CO)HCl] () with NaBH4 yields the isolable borohydride complexes [Ru(NHC)(L)(CO)H(eta2-BH4)] (, L=NHC, PPh3). Both the bis-IMes complex and the IMes-PPh3 species react with CO at low temperature to give the eta1-borohydride species [Ru(IMes)(L)(CO)2H(eta1-BH4)] (L=IMes , PPh3), which can be spectroscopically characterised. Upon warming to room temperature, further reaction with CO takes place to afford initially [Ru(IMes)(L)(CO)2H2] (L=IMes, L=PPh3) and, ultimately, [Ru(IMes)(L)(CO)3] (L=IMes , L=PPh3). Both and lose BH3 on addition of PMe2Ph to give [Ru(IMes)(L)(L')(CO)H2](L=L'=PMe2Ph; L=PPh3, L'=PMe2Ph). Compounds and have been tested as catalysts for the hydrogenation of aromatic ketones in the presence of (i)PrOH and H2. For the reduction of acetophenone, catalytic activity varies with the NHC present, decreasing in the order IPr>IMes>SIMes.  相似文献   

2.
New procedures for the synthesis of [Au(NHC)(OH)] are reported. Initially, a two-step reaction via the digold complex [{Au(NHC)}(2)(μ-OH)][BF(4)] was probed, enabling the preparation of the novel [Au(SIPr)(OH)] complex and of its previously reported congener [Au(IPr)(OH)]. After further optimization, a one-step procedure was developed.  相似文献   

3.
The synthesis and characterization of three- and four-coordinate Ni(CO)n(NHC) (n = 2, 3; NHC = N-heterocyclic carbene) complexes are reported. Reactions with CO of the Ni(CO)2(NHC) complexes lead to the quantitative formation of Ni(CO)4. Investigation of this reaction under equilibrium conditions allows for the determination of Ni-NHC bond dissociation energies.  相似文献   

4.
A simple synthetic method to access a wide range of [Rh(acac)(CO)(NHC)] complexes is described. In situ infra-red monitoring provides insights into the mechanism of the reaction, including the identification of a key intermediate. An understanding of the reaction mechanism leads to the discovery of novel pathways to commonly used congeners.  相似文献   

5.
The ambient temperature reaction of the N-heterocyclic carbenes (NHCs) 1,3-dimesitylimidazol-2-ylidene (IMes) and 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IDipp) with the triruthenium cluster [Ru(3)(CO)(12)], in a 3 : 1 stoichiometric ratio, results in homolytic cleavage of the cluster to quantitatively afford the complexes [Ru(CO)(4)(NHC)] (; NHC = IMes, ; NHC = IDipp). Reaction of the 2-thione or hydrochloride precursors to IMes, i.e. S[double bond, length as m-dash]IMes and IMes.HCl, with the same triruthenium cluster affords the complexes [Ru(4)(mu(4)-S)(2)(CO)(9)(IMes)(2)] () and [Ru(4)(mu(4)-S)(CO)(10)(IMes)(2)] () (3 : 1 and 2 : 1 reaction), and [{Ru(mu-Cl)(CO)(2)(IMes)}(2)] () (3 : 1 reaction) respectively. By contrast, the complex [Ru(3)(mu(3)-S)(2)(CO)(7)(IMeMe)(2)] (), where IMeMe is 1,3,4,5-tetramethylimidazol-2-ylidene, is the sole product of the 2 : 1 stoichiometric reaction of S[double bond, length as m-dash]IMeMe with [Ru(3)(CO)(12)]. Compounds -, and have been structurally characterised by single crystal X-ray diffraction.  相似文献   

6.
The labile nature of the coordinated water ligands in the organometallic aqua complex [Ru(dppe)(CO)(H(2)O)(3)][OTf](2) (1) (dppe = Ph(2)PCH(2)CH(2)PPh(2); OTf = OSO(2)CF(3)) has been investigated through substitution reactions with a range of incoming ligands. Dissolution of 1 in acetonitrile or dimethyl sulfoxide results in the facile displacement of all three waters to give [Ru(dppe)(CO)(CH(3)CN)(3)][OTf](2) (2) and [Ru(dppe)(CO)(DMSO)(3)][OTf](2) (3), respectively. Similarly, 1 reacts with Me(3)CNC to afford [Ru(dppe)(CO)(CNCMe(3))(3)][OTf](2) (4). Addition of 1 equiv of 2,2'-bipyridyl (bpy) or 4,4'-dimethyl-2,2'-bipyridyl (Me(2)bpy) to acetone/water solutions of 1 initially yields [Ru(dppe)(CO)(H(2)O)(bpy)][OTf](2) (5a) and [Ru(dppe)(CO)(H(2)O)(Me(2)bpy)][OTf](2) (6a), in which the coordinated water lies trans to CO. Compounds 5a and 6a rapidly rearrange to isomeric species (5b, 6b) in which the ligated water is trans to dppe. Further reactivity has been demonstrated for 6b, which, upon dissolution in CDCl(3), loses water and coordinates a triflate anion to afford [Ru(dppe)(CO)(OTf)(Me(2)bpy)][OTf] (7). Reaction of 1 with CH(3)CH(2)CH(2)SH gives the dinuclear bridging thiolate complex [[(dppe)Ru(CO)](2)(mu-SCH(2)CH(2)CH(3))(3)][OTf] (8). The reaction of 1 with CO in acetone/water is slow and yields the cationic hydride complex [Ru(dppe)(CO)(3)H][OTf] (9) via a water gas shift reaction. Moreover, the same mechanism can also be used to account for the previously reported synthesis of 1 upon reaction of Ru(dppe)(CO)(2)(OTf)(2) with water (Organometallics 1999, 18, 4068).  相似文献   

7.
The ruthenium N-heterocyclic carbene (NHC) hydride fluoride complexes Ru(NHC)(P-P)(CO)HF (NHC = ICy (3), IEt2Me2 (5), P-P = xantphos; NHC = ICy (7), P-P = dppf) have been prepared by treatment of the corresponding dihydride complexes [Ru(NHC)(P-P)(CO)H2] (NHC = ICy (2), IEt2Me2 (4) P-P = xantphos; NHC = ICy (6), P-P = dppf) with Et3N·3HF. In all cases, the hydride fluoride complexes exist in solution as two conformers or isomers. Although 3, 5 and 7 could be converted back to 2, 4 and 6, respectively, by heating with Et3SiH, efforts to generate a catalytic cycle for the hydrodefluorination of aromatic fluorocarbons by subsequent reaction of Ru(NHC)(P-P)(CO)H2 with C6F6 were prevented by the much more favourable cyclometallation of the carbene ligand.  相似文献   

8.
Eight bicyclic amidinium precursors (3), prepared from R,S-tmcp (R,S-tmcp: (1R,3S)-diamino-1,2,2-trimethylcyclopentane) were described. Only five of the precursors (3ae) could be converted to palladium complexes, (PdX2(6,7-NHC)PEPPSI) (4) by treatment with PdCl2, K2CO3, and pyridine (additional KBr was used for (PdBr2(6,7-NHC)PEPPSI)). The salts and complexes were fully characterized by spectroscopic methods and X-ray crystallography.  相似文献   

9.
The reaction between palladium acetate and IMES.HCl leads to the formation of a novel palladium complex. The X-ray crystal structure analysis reveals that the palladium is C(2) bound to one NHC ligand (the normal binding mode), whereas the second ligand is attached through the C(5) carbon of the second imidazolium. The metalation site on the imidazolium salt is strongly influenced by the presence of base. Furthermore, the binding mode of the NHC to Pd is shown to substantially affect the catalytic behavior of the palladium complexes in cross-coupling reactions.  相似文献   

10.
Three four-coordinate N-heterocyclic carbene (NHC) copper(I) complexes, [Cu(Py-Im)(POP)](PF6) (P1), [Cu(Py-BenIm)(POP)](PF6) (P2), and [Cu(Py-c-BenIm)(POP)](PF6) (P3) (Py-Im = 3-methyl-1-(pyridin-2-yl)-1H-imidazolylidene, Py-BenIm = 3-methyl-1-(pyridin-2-yl)-1H-benzo[d]imidazolylidene, Py-c-BenIm = 3-methyl-1-(pyridin-2-ylmethyl)-1H-benzo[d]imidazolylidene, POP = bis([2-diphenylphosphino]-phenyl)ether), have been synthesized without transmetalation of the NHC–Ag(I) complex for the first time. The photophysical properties of the resultant NHC–Cu(I) complexes have been systematically investigated via spectroscopic methods. All complexes exhibit good photoluminescence properties with long excited-state lifetimes and moderate quantum yields. Density functional theory and time dependent density functional theory calculations were employed to rationalize the photophysical properties of the NHC–Cu(I) complexes.  相似文献   

11.
The transamination of alkyl-palladium halide N-heterocyclic carbene complexes has enabled the isolation of products that reveal interesting insights into the factors which might be barriers to the development of a palladium-catalysed alkyl-amination reaction.  相似文献   

12.
Palladacycle dimers possessing bridging halides can be easily cleaved by using N-heterocyclic carbenes (NHCs) to generate novel monomeric complexes. The structure of one of these was determined by single-crystal diffraction study and consists of a square-planar coordination around the palladium center where the NHC ligand is trans to the amine of the palladacycle. The complex was found to be equally active in aryl amination and alpha-arylation of ketones even at very low catalyst loading (0.02 mol %). Primary and secondary alkyl/arylamines are equally active partners in coupling reactions. [reaction: see text]  相似文献   

13.
A series of (NHC)Pd(R-allyl)Cl complexes [NHC: IPr = N,N'-bis(2,6-diisopropylphenyl)imidazol-2-ylidene, SIPr = N,N'-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene; R = H, Me, gem-Me2, Ph] have been synthesized and fully characterized. When compared to (NHC)Pd(allyl)Cl, substitution at the terminal position of the allyl scaffold favors a more facile activation step. This translates into higher catalytic activity in the Suzuki-Miyaura and Buchwald-Hartwig reactions, allowing for the coupling of unactivated aryl chlorides at room temperature in minutes. In the Suzuki-Miyaura reaction, aryl triflates, bromides, and chlorides react with boronic acids using very low catalyst loading. In the N-aryl amination reaction, a wide range of substrates has been coupled efficiently; primary-, secondary-, alkyl-, or aryl-amines react in high yields with unactivated, neutral, and activated aryl chlorides and bromides. In both reactions, extremely hindered substrates such as tri-ortho-substituted biaryls and tetra-ortho-substituted diarylamines can be produced without loss of activity. Finally, the present catalytic system has proven to be efficient with as low as 10 parts-per-million (ppm) of precatalyst in the Buchwald-Hartwig reaction and 50 ppm in the Suzuki-Miyaura reaction.  相似文献   

14.
A number of cationic gold(I) complexes have been synthesized and found to be stabilized by the use of N-heterocyclic carbene ligands. These species are often employed as in situ-generated reactive intermediates in gold catalyzed organic transformations. An isolated, well-defined species was tested in gold-mediated carbene transfer reactions from ethyl diazoacetate.  相似文献   

15.
16.
One-pot preparation and characterization of the first reported nickel(II) complexes containing a single imidazol-2-ylidene ligand are reported. Subsequent treatment of these complexes with molecular oxygen at room temperature results in rapid formation of a mu-hydroxo dimer and alpha,beta-unsaturated carbonyl compounds. Mechanistic investigations indicate that this reaction proceeds via reversible oxygen binding followed by rate-limiting decomposition of the resulting metal-oxygen species.  相似文献   

17.
Reductive carbonylation of TaCl(5) in the presence of 1,2-bis(diphenylphosphino)ethane (dppe) under the appropriate conditions results in the formation of TaCl(CO)(2)(dppe)(2) (1), as the major product, and the possibly cyclic oligomer [TaCl(CO)(2)(dppe)(2)](2)(x)() (2, 2x >/= 4) as a minor product. Carbonylation of 1 (1 atm) results in the rapid but reversible formation of TaCl(CO)(4)(dppe) (3). Solutions of all three compounds exhibit low levels of paramagnetism, possibly attributable to thermal population of low-lying triplet excited states. Crystal data for the toluene solvate of 1, C(68)H(64)ClO(2)P(4)Ta: triclinic, P&onemacr; (No. 2), a = 13.937(12) ?, b = 14.811(7) ?, c = 14.929(9) ?, alpha = 102.30(5) degrees, beta = 95.60(7) degrees, gamma = 98.41(5) degrees, Z = 2.  相似文献   

18.
Mixed NHC-phosphane palladium(0) complexes [(NHC)Pd(PR(3))] (NHC: N-heterocyclic carbene) are synthesized directly from commercially available reagents, with the possibility to tune the nature of both the NHC and the phosphane. Reaction of [(NHC)Pd(allyl)Cl] (palladium source) and PR(3), in the presence of a base afforded, in isopropanol, [(NHC)Pd(PR(3))] in good yields. We found that the nature of the solvent played a key role in the efficient reduction of the Pd(II) precursor to Pd(0). Supported by experimental evidence we propose that the reduction step is driven by the isopropoxide anion formed in situ from isopropanol and a base. Detection of acetone in the reaction mixture confirms that the isopropoxide anion acts as the reducing agent. Moreover, different bases proved efficient for the reaction. The structures of the complexes were unambiguously confirmed by X-ray analysis. Exposure of these complexes to air does not lead to decomposition, but to the oxo-complex [(NHC)Pd(PR(3))(O(2))], which is stable both in the solid state and in solution.  相似文献   

19.
20.
The synthesis of six novel zinc (II) mono(N-heterocyclic carbene) complexes is described. 1,3-Bis(mesityl)-imidazol-2-ylidene was reacted with the zinc salts ZnX2 (X=Cl, CH3COO, PhCOO, and PhCH2COO) to yield the corresponding monomeric Zn-NHC complex ZnCl2(NHC)(THF) (1) and dimeric [Zn(OOCCH3)2(NHC)]2 (2), [Zn(OOCPh)2(NHC)]2 (3), [Zn(OOCCH2Ph)2(NHC)]2 (4) (NHC=1,3-bis(mesityl)-imidazol-2-ylidene). Reaction of 1 with 2 equivalents of silver trifluoromethanesulfonate yielded monomeric Zn(O3SCF3)2(NHC)(THF) (5), reaction of 1 with sodium {[R(+)-α-2-(1-phenyl-ethylimino)-methyl]-phenolate} yielded monomeric ZnCl(OC6H4-2-CHN(CHPhCH3)(NHC) (6). Compounds 1, 4-6 were structurally characterized by X-ray analysis. Selected compounds were investigated for their activity in the copolymerization of carbon dioxide with cyclohexene oxide as well as in the ring-opening polymerization of cyclohexene oxide and ε-caprolactone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号