首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 342 毫秒
1.
生物质间接液化合成燃料二甲醚   总被引:1,自引:0,他引:1  
在双功能催化剂JC207/HZSM-5上,对流化床内制备的生物质气脱碳后合成二甲醚进行了研究。结果表明,二甲醚时空产率在260℃达到最大;随反应压力升高而增大;随空速的增加,时空产率先增加后降低。同时发现,在合成二甲醚的生物质气中须把生物质气中二氧化碳降低到5%后才可以提高甲醇合成反应速率,进而提高二甲醚合成反应速率。  相似文献   

2.
在一个小型鼓泡流化床反应器上以Ar气为流化介质,对以天然铁矿石为氧载体的生物质化学链气化制合成气过程进行了研究。考察了反应温度对合成气组分、气体产率、碳转化率以及气化效率的影响,反应时间对合成气组分的影响;探讨了氧载体存在对生物质气化过程的影响。结果表明,天然铁矿石可以作为生物质化学链气化制合成气反应过程的氧载体,代替富氧空气或高温水蒸气作为生物质气化的气化剂;随着温度的升高,产物气体中CO、H2的浓度逐渐增加,CO2、CH4浓度缓慢降低;随着反应时间的延长,合成气中H2、CO、CH4的相对浓度缓慢增加,而CO2相对浓度逐渐降低;氧载体的存在能显著提高气体产率和碳的转化率及气化效率。扫描电镜-能谱(SEM-EDS)分析表明,当超过850 ℃时,铁矿石氧载体颗粒表面烧结现象明显,但反应前后,颗粒表面的成分及含量基本保持不变。  相似文献   

3.
A series of biomass wastes (sewage sludges, coffee hulls and glycerol) were subjected to pyrolysis experiments under conventional and microwave heating. The influence of the initial characteristics of the raw materials upon syngas production was studied. Glycerol yielded the highest concentration of syngas, but the lowest H2/CO ratio, whereas sewage sludges produced the lowest syngas production with the highest H2/CO molar ratio. Coffee hull displayed intermediate values for both parameters. Microwave heating produced greater gas yields with elevated syngas content than conventional pyrolysis. Moreover, microwave pyrolysis always achieved the desired effect with temperature increase upon the pyrolysis products, whatever biomass material was employed. This could be due to the hot spot phenomenon, which only occurs under microwave heating. In addition, a comparison of the energy consumption of the traditional and microwave-assisted pyrolysis is also presented. Results point at microwave system as less time and energy consuming in comparison to conventional system.  相似文献   

4.
生物质气化重整合成二甲醚   总被引:11,自引:5,他引:11  
以松木粉为原料,采用空气 水蒸气气化制备了富氢气化气,通过添加甲烷重整富氢气化气,调整了合成气化学当量比,在260 ℃、4 MPa、12 000 h-1条件下,对生物质合成气一步法合成二甲醚进行了实验研究。结果表明:引入甲烷重整,活化了富氢气化气中过量的CO2,甲烷的最佳加入量为CH4/CO2=1,生物质碳转化率达到70%以上,尾气中二甲醚选择性达到69.6%。  相似文献   

5.
In the last decades the interest in the biomass gasification process has increased due to the growing attention to the use of sustainable energy. Biomass is a renewable energy source and represents a valid alternative to fossil fuels. Gasification is the thermochemical conversion of an organic material into a valuable gaseous product, called syngas, and a solid product, called char. The biomass gasification represents an efficient process for the production of power and heat and the production of hydrogen and second-generation biofuels.This paper deals with the state of the art biomass gasification technologies, evaluating advantages and disadvantages, the potential use of the syngas and the application of the biomass gasification. Syngas cleaning though fundamental to evaluate any gasification technology is not included in this paper since; in the authors' opinion, a dedicated review is necessary.  相似文献   

6.
面向氢能源、燃料电池和二氧化碳减排的制氢途径的选择   总被引:3,自引:1,他引:2  
对氢气的多种制造途径加以探讨,也涉及到氢能的利用、燃料电池以及二氧化碳的减排。需要指出的是氢气并非能源,而只是能量的载体。 所以氢能的发展首先需要制造氢气。对于以化石燃料为基础的制氢过程,如煤的气化和天然气重整,需要开发更经济和环境友好的新过程,在这些新过程中要同时考虑二氧化碳的有效收集和利用问题。对于煤和生物质,在此提出了一种值得进一步深入研究的富一氧化碳气化制氢的概念。对于以氢为原料的质子交换膜燃料电池系统,必须严格控制制备的氢气中的一氧化碳和硫化氢;对于以烃类为原料的固体氧化物燃料电池,制备的合成气中的硫也需严格控制。然而,传统的脱硫方法并不适宜于这种用于燃料电池的极高深度的氢气和合成气的脱硫。氢能和燃料电池的发展是与控制二氧化碳排放紧密相关的。  相似文献   

7.
Biomass splitting into gases and solids using flash light irradiation is introduced as an efficient photo-thermal process to photo-pyrolyze dried natural biomass powders to valuable syngas and conductive porous carbon (biochar). The photo-thermal reactions are carried out in a few milliseconds (14.5 ms) by using a high-power Xenon flash lamp. Here, dried banana peel is used as a model system and each kg of dried biomass generates ca. 100 L of hydrogen and 330 g of biochar. Carbon monoxide and some light hydrocarbons are also generated providing a further increase in the high heating value (HHV) with an energy balance output of 4.09 MJ per kg of dried biomass. Therefore, biomass photo-pyrolysis by flash light irradiation is proposed as a new approach not only to convert natural biomass wastes into energy, such as hydrogen, but also for carbon mitigation, which can be stored or used as biochar.

Biomass splitting into gases and solids using flash light irradiation is introduced as an efficient photo-thermal process to photo-pyrolyze dried natural biomass powders to valuable syngas and conductive porous carbon (biochar).  相似文献   

8.
Moisture content (MC) of green biomass or raw biomass materials (wood, bark, plants, etc.) commonly exceeds 50 mass % (wet basis). The maximum possible MC of biomass fuel for big scale combustion (e.g. fluidized bed combustion with low external heat losses) is approximately 60–65 mass %. Higher biomass MC generally causes operational problems of biomass combustors, lower stability of burning and higher CO and VOC emissions. Gasification of biomass with higher MC produces fuel gas of lower effective heating values and higher tar concentrations. In this review, various technological schemes for wood drying in combination with combustion/gasification with the assessment of factors for possible minimization of emissions of organics from the drying processes are compared. The simple direct flue gas biomass drying technologies lead to exhaust drying gases containing high VOC emissions (terpenes, alcohols, organic acids, etc.). VOC emissions depend on the drying temperature, residence time and final MC of the dried biomass. Indirect biomass drying has an advantage in the possibility of reaching very low emissions of organic compounds from the drying process. Exhaust drying gases can be simply destroyed as a part of the total combustion air (gas) in a combustion chamber or a gasifier. Liquid, condensed effluents have to be treated properly because they have relatively high content of organic compounds, some of them accompanied by odor. Drying of biomass with superheated steam offers more uniform drying of both small and bigger particles and shorter periods of higher temperatures of the dried biomass, particularly if drying to the final MC below 15 mass % is required. In practical modern drying technologies, biomass (mainly wood) is dried in recirculated gas of relatively high humidity (approaching saturation) and the period of constant rate drying is longer. Drying of moist wood material (saw dust, chips, etc.) is required in wood pellet production. Emissions of organics in drying depend on biomass properties, content of resins, storing time and on operational aspects of the drying process: drying temperature, drying medium, final MC, residence time, and particle size distribution of the dried biomass (wood). Integration of biomass drying with combustion/gasification processes includes the choice of the drying medium (flue gas, air, superheated steam). Properties of the drying media and operational parameters are strongly dependent on local conditions, fuel input of the combustion/gasification unit, cleaning of the exhaust drying media (gas, steam, wastewater), and on environmental factors and requirements.  相似文献   

9.
生物质气催化合成甲醇的研究   总被引:11,自引:6,他引:11  
在高压微型反应装置上进行了生物质气合成甲醇的研究。利用组成为H2/CO/CO2 /N2(体积比)=52.5/21.5/22.8/3.2 的富CO2原料气考察了不同温度、压力和空速条件时甲醇的时空产率和质量分数。结果表明,在所考察的范围内,甲醇的产率和质量分数在260 ℃达到最大。产率和质量分数随反应压力升高而增大,空速增加使产率增大,甲醇的质量分数降低。当p=4 MPa,t=260 ℃,WHSV=5 280 h-1时, 甲醇的时空产率为0.79 g·(mL·h)-1,质量分数为96.2%,与工业合成气相比,分别下降25.8%和1.64%。  相似文献   

10.
Biomass gasification for synthesis gas production represents a promising source of energy based on plasma treatment of renewable fuel resources. Gasification/pyrolysis of crushed wood as a model substance of biomass has been experimentally carried out in the plasma-chemical reactor equipped with gas–water stabilized torch which offer advantage of low plasma mass-flow, high enthalpy and temperature making it possible to attain an optimal conversion ratio with respect to synthesis gas production in comparison with other types of plasma torches. To investigate this process of gasification in detail with possible impact on performance, a numerical model has been created using ANSYS FLUENT program package. The aim of the work presented is to create a parametric study of biomass gasification based on various diameters of wooden particles. Results for molar fractions of CO for three different particles diameters obtained by the modeling (0.55, 0.52 and 0.48) at the exit are relatively good approximation to the corresponding experimental value (0.60). The numerical results reveal that the efficiency of gasification and syngas production slightly decreases with increasing diameter of the particles. Computed temperature inhomogeneities in the volume of the reactor are strongest for the largest particle diameter and decrease with decreasing size of the particles.  相似文献   

11.
氢气和合成气下生物质高压液化过程的实验研究   总被引:1,自引:2,他引:1  
在小型高压反应釜中以四氢萘为溶剂,氢气和合成气为液化反应气,通过对不同液化条件下所得液化产物的收率及性质分析,考察了不同液化条件(反应温度、反应时间、反应气压力)对锯屑高压液化行为的影响;同时在相同液化条件下,通过液化产物收率和性质的分析,考察了气氛对锯屑高压液化行为的影响,探讨了用合成气代替氢气进行液化的可行性。结果表明,在氢气和合成气气氛下,随着反应温度的升高、反应时间的延长或反应压力的提高,液化油的收率都是增加的,但各种条件对液化油收率的影响程度不同。温度影响最大,时间影响次之,而液化气压力的影响最小。其他液化条件完全相同的情况下,氢气和合成气下所得产物的收率及性质相近,用合成气代替氢气液化具有可行性。在此条件下优化的液化反应条件为,以四氢萘为溶剂,反应温度为300℃,气体压力为2MPa,反应时间为30min,转化率为75.1%,液化油收率高达48.4%。  相似文献   

12.
The influence of the water content, the gasification atmosphere and the action of inorganic catalysts on biomass pyrolysis is discussed. The pyrolysis conditions are characterized by a heating rate of a wood sample of 250–300°C/s and a residence time of the gas in the hot zone of the reactor of less than 1 s. Volumes, carbon contents, weights and energy balances at different temperatures (600–1000°C) are tabulated. The total volume of pyrolysis gas and the yields increase with increasing temperature and water content. This increase is especially due to the production of hydrogen. A large part of the gasified hydrogen comes from water. Water that has not been driven off from green wood is more gasifiable than water that is re-added or from the atmosphere. Three types of catalysts were tested: alumina, aluminosilicate material and nickel-supported catalyst. The results show that it is possible to control the distribution of gas species by controlling the water content of the biomass and selecting the catalyst on which the wood is pyrolysed. A nickel catalyst on mordenite seems to be very efficient in directing pyrolysis gas production towards synthesis gas.  相似文献   

13.
In this study, the main purpose is to develop low-cost catalysts with high activity and stability for high quality syngas production via steam reforming of biomass tar in biomass gasification process. The calcined waste scallop shell(CS) supported copper(Cu) catalysts are prepared for steam reforming of biomass tar. The prepared Cu supported on CS catalysts exhibit higher catalytic activity than those on commercial CaO and Al_2O_3. Characterization results indicate that Cu/CS has a strong interaction between Cu and CaO in CS support, resulting in the formation of calcium copper oxide phase which could stabilize Cu species and provide new active sites for the tar reforming. In addition, the strong basicity of CS support and other inorganic elements contained in CS support could enhance the activity of Cu/CS. The addition of a small amount of Co is found to be able to stabilize the catalytic activity of Cu/CS catalysts,making them reusable after regeneration without any loss of their activities.  相似文献   

14.
Achieving the EU 2030 vision of a 15% minimum amount of biofuels utilized in the road transportation require more research on biofuel production from biomass feedstock. To this end, this review study examines the use of green, deep eutectic solvents and direct transesterification approaches for biomass conversion to biofuels. Next, biogas production from anaerobic co-digestion of microalgae biomass is presented. Lastly, the effect of operating conditions, as well as advantages and limitations of several biomass conversion techniques are outlined. Of note, this study presents promising microalgae conversion processes which could be progressed are the use of bio-based solvents and supercritical fluids for biodiesel production, hydrothermal liquefaction for biogas production, microwave-induced pyrolysis for syngas production, and ultrasound/microwave enhanced extraction for bio-oil production. These are based on the possibility of high yield and process economics. We have also enumerated knowledge gaps needed to propel future studies.  相似文献   

15.
采用改进颗粒床模型的CFD方法模拟了实验室规模冷模装置内鼓泡床的流体流动时空特性。模拟结果表明表观气速是影响气固动态特征和压力波动的主要因素之一:随表观气速的增大,气泡数目增加,气泡体积增大,压力波动增强;气速越高时均压降越大;在内循环鼓泡流化床内固体颗粒呈“单室”流型。上述与实验观察相吻合的模拟结果将有助于放大和设计商业化的内循环流化床生物质气化炉。  相似文献   

16.
煤化工工艺技术评述与展望Ⅱ.合成乙烯和二甲醚   总被引:7,自引:0,他引:7  
评述了由合成气合成乙烯和二甲醚的研究进展和工业开发状态,比较和讨论了合成乙烯和二甲醚的各种工艺路线,提出我国合成乙烯和二甲醚的工业开发方向。  相似文献   

17.
合成气一步法制备液化石油气(LPG)可在甲醇合成催化剂和分子筛组成的复合催化剂上实现.本实验选用与Y分子筛孔径相近的SAPO-5分子筛(0.73 nm × 0.73 nm)作为研究对象,在335 ℃、3.0 MPa、空速1 500 h-1、Cu-Zn-Al/Pd-SAPO-5质量比为1/2的条件下获得了73.9%的CO转化率和73.0%的LPG选择性,该结果进一步证实了较大孔径的分子筛有利于LPG的合成.此外,研究结果还表明,合成气一步法制备LPG过程中甲醇/二甲醚向烃类的转化遵循烃池机理.  相似文献   

18.
Biomass tar mainly consists of stable aromatic compounds such as benzene and polyaromatic hydrocarbons, benzene being the biggest tar component in real biomass gasification gas. For the analysis of individual tar compounds, the solid-phase adsorption method was chosen. According to this method, tar samples are collected on a column with an amino-phase sorbent. With a high benzene concentration in biomass tar, some of the benzene will not be collected on the amino-phase sorbent. To get over this situation, we have installed another column with activated charcoal which is intended for collection of volatile organic compounds, including benzene, after the column with the amino-phase sorbent. The study of maximal adsorption amounts of various compounds on both adsorbents while testing different sampling volumes led to the conclusion that benzene is a limiting compound. The research proved that the use of two sorbents (500 mg + 100 mg) connected in series allows for assessment of tar in synthesis gas with a tar concentration up to 30-40 g m(-3), which corresponds to the requirements of most gasifiers.  相似文献   

19.
合成气直接转化高选择性制烃类产物仍是巨大的挑战.本文合成了以Cr-Zn氧化物为核, SiO2为中间过渡层,再通过原位水热合成覆盖一层SAPO-34分子筛为壳的核壳结构催化剂.合成气转化反应结果显示,与纯Cr-Zn金属氧化物相比,核壳结构催化剂将产物分布由甲醇和甲烷移动至C2–C4烃(所有烃类产物中占66.9%).这表明核壳结构催化剂用于合成气一步法直接转化制液化石油气的反应具有可行性,但是催化剂结构和组成有待于进一步优化,以提高其催化反应性能.  相似文献   

20.
原位漫反射红外光谱技术用于气固催化反应机理的研究   总被引:1,自引:0,他引:1  
漫反射傅立叶变换红外光谱技术是一种对固体粉末样品进行直接测量的光谱方法,是近年来发展起来的一项较理想的原位表征技术。原位漫反射红外技术由于可直接对催化剂表面的吸附态物种给出红外信号,可方便地跟踪鉴定反应中间态和产物,从而为催化反应体系反应机理的考察给出直接的证据。本文对于原位漫反射红外技术用于低温水煤气变换反应和水汽逆变换反应、醇类的水蒸汽重整、含CO2的合成气制取甲醇、低碳烃制合成气、CO催化氧化以及其他烃类和含氧化合物的氧化等方面进行了综述,认为该技术可很好地剖析气固相催化反应机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号