首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We have examined the role of the nucleus and the membrane in the activation of nuclear factor (NF)-KB by oxidant stress generated via the UVA (320–380nm) component of solar radiation. Nuclear extracts from human skin fibroblasts that had been irradiated with UVA at doses that caused little DNA damage contained activated NF-KB that bound to its recognition sequence in DNA. The UVA radiation-dependent activation of NF-KB in enucleated cells confirmed that the nucleus was not involved. On the other hand, UVA radiation-dependent activation of NF-KB appeared to be correlated with membrane damage, and activation could be prevented by a-tocopherol and butylated hydroxytol-uene, agents that inhibited UVA radiation-dependent peroxidation of cell membrane lipids. The activation of NF-KB by the DNA damaging agents UVC (200–290nm) and UVB (290–320nm) radiation also only occurred at doses where significant membrane damage was induced, and, overall, activation was not correlated with the relative levels of DNA damage induced by UVC/UVB and UVA radiations. We conclude that the oxidative modification of membrane components may be an important factor to consider in the UV radiation-dependent activation of NF-KB over all wavelength ranges examined.  相似文献   

3.
The potential to induce non-nuclear changes in mammalian cells has been examined for (1) UVA1 radiation (340–400 nm, UVASUN 2000 lamp), (2) UVA + UVB (peak at 313 nm) radiation (FS20 lamp), and (3) UVC (254 nm) radiation (GI5T8 lamp). The effects of irradiation were monitored in vitro using three strains of L5178Y (LY) mouse lymphoma cells that markedly differ in sensitivity to UV radiation. Comparisons were made for the effects of approximately equitoxic fluences that reduced cell survival to 1–15%. Depending on the cell strain, the fluences ranged from 830 to 1600 kJ/m2 for the UVASUN lamp, 75 to 390 J/m2 for the FS20 lamp and 3.8 to 17.2 J/m2 for the G15T8 lamp. At the exposure level used in this study, irradiation with the UVASUN, but not the FS20 or G15T8, lamp induced a variety of non-nuclear changes including damage to cytoplasmic organelles and increased plasma membrane permeability and cell lysis. Cell lysis and membrane permeabilization were induced by the UVA1 emission of the UVASUN lamp, but not by its visible + IR components (>400 nm). The results show that the plasma membrane and other organelles of LY cells are highly sensitive to UVA1 but not to UVB or UVC radiation. Also UVA1, but not UVB or UVC radiation, causes rapid and extensive lysis of LY cells. In conclusion, non-nuclear damage contributes substantially to UVA cytotoxicity in all three strains of LY cells.  相似文献   

4.
Abstract: Effects of different radiation treatments on the human immunodeficiency virus-1 (HIV) promoter were reassessed for exposures comparable to those encountered in clinical or cosmetic practice, using survival of the host cell as a basis for comparisons. The exposures were performed with two ultraviolet radiation sources commonly used as medical or cosmetic devices (UVASUN 2000 and FS20 lamps), a germicidal (G15T8) lamp and an X-ray machine. The UVC component of the FS20 lamp was filtered out. The emission spectra of the lamps were determined. The characteristics of these sources allowed us to discriminate among effects of UVA1 (340–400 nm), UVB + UVA2 (280–340 nm) and UVC (254 nm) radiations. Effects of irradiation were ascertained using cultures of HeLa cells stably transfected with the HIV promoter linked to a reporter—chloramphenicol acetyl transferase—gene. The exposures used caused at least two logs of cell killing. In this cytotoxicity range, UVA1 or X radiations had no effect on the HIV promoter, whereas UVB + UVA2 or UVC radiations activated the HIV promoter in a fluence-dependent manner. Survivals following exposure to UVB + UVA2 or UVC radiation were (1) at the lowest measurable HIV promoter activation, 30 and 20%, respectively, (2) at one-half maximal activation, 6 and 3%, respectively and (3) at the maximal activation, 0.5 and 0.2%, respectively. The results suggest that, among the radiations studied, UVB is the most important modality from the viewpoint of its potential effects on HIV-infected individuals, since (1) UVA1 or X radiations have no effects on the HIV promoter, (2) human exposure to UVC radiation is infrequent and (3) human UVB exposure is very common.  相似文献   

5.
INDUCTION OF phr GENE EXPRESSION BY PYRIMIDINE DIMERS IN Escherichia coli   总被引:2,自引:0,他引:2  
The photoreactivating enzyme (PRE) is concerned with mainly two kinds of light wavelength. The PRE splits UVC (254 nm)-induced pyrimidine dimer by absorbing UVA (320–380 nm) or visible light in its chromophore. The present paper demonstrates that the phr gene expression was efficiently induced in an excision defective strain (uvrA∼) after irradiation by UVC and UVB (290-320 nm), but not by UVA and visible light. In addition, the induced activity was significantly depressed by irradiation with UVA and visible light. Therefore we conclude that the phr gene expression can be induced by pyrimidine dimers.  相似文献   

6.
Ultraviolet radiation within three different wavelength ranges, UVA (340-400 nm), UVB (290-320 nm) or UVC (200-290 nm), was shown to induce apoptosis in OCP13 cells, derived from the medaka fish. Morphological changes such as cell shrinkage and a decrease in the number of nucleoli appeared 4 h after UVA, UVB or UVC irradiation, although with different relative efficiencies. Doses required to induce apoptosis with similar efficiencies were about 2500-fold higher for UVA and 10-fold higher for UVB than for UVC. The following phenomena occurred after UVA irradiation but not after UVB or UVC irradiation. (1) Ultraviolet-A-induced cell detachment occurred with or without cycloheximide pretreatment. (2) Cells attached to plastic showed morphological changes such as rounding up of nuclei without a change in the cell distribution. (3) Morphological changes after UVA irradiation could not be evaded by photorepair treatment. (4) Morphological changes did not occur in cells attached to glass coverslips but only those in plastic dishes. (5) Apoptosis occurred without detectable increase of caspase-3-like activity. (6) Morphological changes were inhibited by N-acetylcysteine, a scavenger of active oxygen species. These results suggest the existence of two different pathways leading to apoptosis, one for long- (UVA) and the other for short- (UVB or UVC) wavelength radiation.  相似文献   

7.
Abstract— We investigated the ability of the different wavelength regions of UV radiation, UVA(320–400 nm), UVB(290–320 nm) and UVC(200–290 nm), to induce hemolysis. Sheep erythrocytes were exposed to radiation from either a UVA1 (>340 nm) sunlamp, a UVB sunlamp, or a UVC germicidal lamp. The doses used for the three wavelength regions were approximately equilethal to the survival of L5178Y murine lymphoma cells. Following exposure, negligible hemolysis was observed in the UVB- and UVC-irradiated erythrocytes, whereas a decrease in the relative cell number (RCN), indicative of hemolysis, was observed in the UVA 1-exposed samples. The decrease in RCN was dependent on dose(0–1625 kj/m2), time(0–78 h postirradiation) and cell density (106-107 cells/mL). Hemolysis decreased with increasing concentration of glutathione, hemoglobin or cell number, while the presence of pyruvate drastically enhanced it. Because scanning spectroscopy(200–700 nm) showed that hemoproteins and nicotinamide adenine dinucleotides were oxidized, cytoplasmic oxidative stress was implicated in the lytic mechanism. Further evidence of oxidation was obtained from electron micrographs, which revealed the formation of Heinz bodies near the plasma membrane. The data demonstrate that exposure of erythrocytes to UVA1, but not UVB or UVC, radiation causes oxidation of cytoplasmic components, which results in cytoskeletal damage and hemolysis.  相似文献   

8.
Nonsteroidal anti-inflammatory drug (NSAID)-photoinduced DNA damage in human peripheral blood mononuclear cells measured using the alkaline comet assay is presented. Whereas Tiaprofenic Acid-photoinduced DNA damage was promptly induced (i.e. observed at relatively low radiation doses), Ketoprofen-photoinduced DNA damage was delayed. This prompt and delayed effect is observed with UVA (320-400 nm), UVB (290-320 nm) and solar-simulated radiation and is attributed to the different photochemical properties of NSAID. The results from these experiments, carried out in living cells, confirm the speculations of NSAID-photoinduced DNA damage brought up by the many experiments conducted in solution.  相似文献   

9.
Both the UVB (290-320 nm) and UVA (320-380 nm) regions of sunlight damage human skin cells but, particularly at the longer wavelengths, information is scant concerning the mechanism(s) of damage induction and the roles of cellular defense mechanisms. Following extensive glutathione depletion of cultured human skin fibroblasts, the cells become strongly sensitized to the cytotoxic action of near-visible (405 nm), UVA (334 nm, 365 nm) and UVB (313 nm) but not UVC (254 nm) radiations. In the critical UVB region, the magnitude of the protection afforded by endogenous glutathione approaches that of the protection provided by excision repair. The results suggest that a significant fraction of even UVB damage can be mediated by free radical attack and that a major role of glutathione in human skin cells is to protect them from the cytotoxic action of sunlight.  相似文献   

10.
Abstract— There is limited information about the carcinogenic effect of longwave ultraviolet radiation (UVA: 315-400 nm). In particular very little is known about the relevant genotoxic damage caused by physiological doses of UVA radiation. A general response of cells to DNA damage is a delay or arrest of the cell cycle. Conversely, such cellular responses after UVA irradiation would indicate significant genotoxic damage. The aim of this study is to compare cell cycle kinetics of human fibroblasts after UVC (190-280 nm radiation), UVB (280-315 nm radiation) and UVA irradiation. Changes in the cell cycle kinetics were assessed by bivariate flow cytometric analysis of DNA synthesis and of DNA content. After UVC, UVB or UVA irradiation of human fibroblasts a suppression was seen of bromodeoxyuridine (BrdU) incorporation at all stages of S phase. The magnitude of this suppression appeared dose dependent. Maximum suppression was reached at 5-7 h after UVB exposure and directly after UVA exposure, and normal levels were reached 25 h after UVB and 7 h after UVA exposure. The lowered BrdU uptake corresponded with a lengthening of the S phase. No dramatic changes in percentages of cells in G1, S and G2/M were seen after the various UV irradiations. Apparently, UVA irradiation, like UVB and UVC irradiation, can temporarily inhibit DNA synthesis, which is indicative of genotoxic damage.  相似文献   

11.
DNA damage profiles have been established in plasmid DNA using purified DNA repair enzymes and a plasmid relaxation assay, following exposure to UVC, UVB, UVA or simulated sunlight (SSL). Cyclobutane pyrimidine dimers (CPDs) are revealed as T4 endonuclease V-sensitive sites, oxidation products at purine and pyrimidine as Fpg- and Nth-sensitive sites, and abasic sites are detected by Nfo protein from Escherichia coli. CPDs are readily detected after UVA exposure, though produced 10(3) and 10(5) times less efficiently than by UVB or UVC, respectively. We demonstrate that CPDs are induced by UVA radiation and not by contaminating UVB wavelengths. Furthermore, they are produced at doses compatible with human exposure and are likely to contribute to the mutagenic specificity of UVA [E. Sage et al., Proc. Natl. Acad. Sci. USA 93 (1996) 176-180]. Oxidative damage is induced with a linear dose dependence, for each region of the solar spectrum, with the exception of oxidized pyrimidine and abasic sites, which are not detectable after UVB irradiation. The distribution of the different classes of photolesions varies markedly, depending on wavelengths. However, the unexpectedly high yield of oxidative lesions, as compared to CPDs, by UVA and SSL led us to investigate their production mechanism. An artificial formation of hydroxyl radicals is observed, which depends on the material of the sample holder used for UVA irradiation and is specific for long UV wavelengths. Our study sheds light on a possible artefact in the production of oxidative damage by UVA radiation. Meanwhile, after eliminating some potential sources of the artefact ratios of CPDs to oxidized purine of three and five upon irradiation with UVA and SSL, respectively, are still observed, whereas these ratios are about 140 and 200 after UVC and UVB irradiation.  相似文献   

12.
The formation of cyclobutane pyrimidine dimers (CPD) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) was investigated in Chinese hamster ovary cells upon exposure to either UVC, UVB, UVA or simulated sunlight (SSL). Two cell lines were used, namely AT3-2 and UVL9, the latter being deficient in nucleotide excision repair and consequently UV sensitive. For all types of radiation, including UVA, CPD were found to be the predominant lesions quantitatively. At the biologically relevant doses used, UVC, UVB and SSL irradiation yielded 8-oxodGuo at a rather low level, whereas UVA radiation produced relatively higher amounts. The formation of CPD was 10(2) and 10(5) more effective upon UVC than UVB and UVA exposure. These yields of formation followed DNA absorption, even in the UVA range. The calculated relative spectral effectiveness in the production of the two lesions showed that efficient induction of 8-oxodGuo upon UVA irradiation was shifted toward longer wavelengths, in comparison with those for CPD formation, in agreement with a photosensitization mechanism. In addition, after exposure to SSL, about 19% and 20% of 8-oxodGuo were produced between 290-320 nm and 320-340 nm, respectively, whereas CPD were essentially (90%) induced in the UVB region. However, the ratio of CPD to 8-oxodGuo greatly differed from one source of light to the other: it was over 100 for UVB but only a few units for UVA source. The extent of 8-oxodGuo and CPD was also compared to the lethality for the different types of radiation. The involvement of 8-oxodGuo in cell killing by solar UV radiation was clearly ruled out. In addition, our previously reported mutation spectra demonstrated that the contribution of 8-oxodGuo in the overall solar UV mutagenic process is very minor.  相似文献   

13.
This study compared biological responses of normal human fibroblasts (NHF1) to three sources of ultraviolet radiation (UVR), emitting UVC wavelengths, UVB wavelengths, or a combination of UVA and UVB (solar simulator; emission spectrum, 94.3% UVA and 5.7% UVB). The endpoints measured were cytotoxicity, intra‐S checkpoint activation, inhibition of DNA replication and mutagenicity. Results show that the magnitude of each response to the indicated radiation sources was best predicted by the density of DNA cyclobutane pyrimidine dimers (CPD). The density of 6‐4 pyrimidine–pyrimidone photoproducts was highest in DNA from UVC‐irradiated cells (14% of CPD) as compared to those exposed to UVB (11%) or UVA–UVB (7%). The solar simulator source, under the experimental conditions described here, did not induce the formation of 8‐oxo‐7,8‐dihydroguanine in NHF1 above background levels. Taken together, these results suggest that CPD play a dominant role in DNA damage responses and highlight the importance of using endogenous biomarkers to compare and report biological effects induced by different sources of UVR.  相似文献   

14.
This work evaluated the photoprotective and antigenotoxic effects against ultraviolet B (UVB) radiation of flavonoid compounds apigenin, naringenin and pinocembrin. The photoprotective efficacy of these compounds was estimated using in vitro photoprotection indices, and the antigenotoxicity against UVB radiation was evaluated using the SOS chromotest and an enzymatic (proteinase K/T4 endonuclease V enzyme) comet assay in UV‐treated Escherichia coli and human (HEK‐293) cells, respectively. Naringenin and pinocembrin showed maximum UV‐absorption peak in UVC and UVB zones, while apigenin showed UV‐absorption capability from UVC to UVA range. These compounds acted as UV filters reducing UV‐induced genotoxicity, both in bacteria and in human cells. The enzymatic comet assay resulted highly sensitive for detection of UVB‐induced DNA damage in HEK‐293 cells. In this work, the photoprotective potential of these flavonoids was widely discussed.  相似文献   

15.
The radiation response of stationary-phase cells of Escherichia coli strains RT4 (nur+) and RT2 (nur) was measured at 6 selected wavelengths between 254 and 405 ran. The relative response of the nur+. and nur strains was almost the same at 254 and 290 nm. However, the differential sensitivity of the RT4 and RT2 strains (ratio of the initial F37 values of the nur+ to the nur strains) was 2.7 at 313 nm, 3.2 at 334 nm, 3.1 at 365 nm, and 2.3 at 405 nm. Thus, the fluence enhancing effect of the nur genotype extends over the wavelength range of approximately 300 to 420 nm. The substantial effect of nur at 313 nm strongly suggests that the increased sensitivity of the nur strain is the consequence of a repair deficiency that reduces the efficiency of mending DNA lesions produced by UVA (320–400 nm) and UVB (290–320 nm), but not UVC (200–290 nm) radiation.  相似文献   

16.
Although previous studies have demonstrated that the predominant photochemistry of type I collagen under 254 nm irradiation may be attributed either to direct absorption by tyrosine/phenylalanine or to peptide bonds, direct collagen photochemistry via solar UV wavelengths is much more likely to involve several age- and tissue-related photolabile collagen fluorophores that absorb in the latter region. In this study, we compare and contrast results obtained from irradiation of a commercial preparation of acid-soluble calf skin type I collagen in solution with UVC (primarily 254 nm), UVA (335–400nm) and broad-band solar-simulating radiation (SSR; 290^1–00nm). Excitation spectroscopy and analysis of photochemically induced disappearance of fluorescence (fluorescence fading) indicates that this preparation has at least four photolabile fluorescent chromophores. In addition to tyrosine and L-3,4-dihydroxyphenylalanine, our sample contains two other fluorophores. Chromophore I, with emission maximum at 360 nm, appears to be derived from interacting aromatic moieties in close mutual proximity. Chromophore II, with broad emission at430–435 nm, may be composed of one or more age-related molecules. Collagen fluorescence fading kinetics are sensitive to excitation wavelength and to conformation. Under UVC, chromophore I fluorescence disappears with second-order kinetics, indicating a reaction between two proximal like molecules. Adherence to second-order kinetics is abrogated by prior denaturation of the collagen sample. A new broad, weak fluorescence band at400–420 nm, attributable to dityrosine, forms under UVC, but not under solar radiation. This band is photolabile to UVA and UVB wavelengths. Amino acid analysis indicates significant destruction of aromatic amino acids under UVC, but not under UVA or SSR. When properly understood, collagen fluorescence fading phenomena may act as a sensitive molecular probe of structure, conformation and reactivity.  相似文献   

17.
Ultraviolet (UV) irradiation is an increasingly used method of water disinfection. UV rays can be classified by wavelength into UVA (320–400 nm), UVB (280‐320 nm), and UVC (<280 nm). We previously developed UVA sterilization equipment with a UVA light‐emitting diode (LED). The aim of this study was to establish a new water disinfection procedure using the combined irradiation of the UVA‐LED and another UV wavelength. An oxidative DNA product, 8‐hydroxy‐2’‐deoxyguanosine (8‐OHdG), increased after irradiation by UVA‐LED alone, and the level of cyclobutane pyrimidine dimers (CPDs) was increased by UVC alone in Vibrio parahaemolyticus. Although sequential irradiation of UVA‐LED and UVC‐induced additional bactericidal effects, simultaneous irradiation with UVA‐LED and UVC‐induced bactericidal synergistic effects. The 8‐OHdG and CPDs production showed no differences between sequential and simultaneous irradiation. Interestingly, the recovery of CPDs was delayed by simultaneous irradiation. The synergistic effect was absent in SOS response‐deficient mutants, such as the recA and lexA strains. Because recA‐ and lexA‐mediated SOS responses have crucial roles in a DNA repair pathway, the synergistic bactericidal effect produced by the simultaneous irradiation could depend on the suppression of the CPDs repair. The simultaneous irradiation of UVA‐LED and UVC is a candidate new procedure for effective water disinfection.  相似文献   

18.
Abstract Cultured fibroblasts derived from normal human skin have been irradiated at a series of monochromatic wavelengths throughout the ultraviolet region and exposed to the specific α polymerase inhibitor, aphidicolin (1 μg/m l , 2 days) prior to assay for colony forming ability. Repair of 75-80% of the lethal damage induced by UVC (254 nm) or UVB (302 nm, 313 nm) radiation is inhibited by aphidicolin suggesting that such damage is repaired by a common α polymerase dependent pathway. Exposure to aphidicolin after irradiation at longer UVA (334 nm, 365 nm) or a visible (405 nm) wavelength leads to slight protection from inactivation implying that the processing of damage induced in this wavelength region is quite distinct from that occurring at the shorter wavelengths and does not involve α polymerase.  相似文献   

19.
Abstract— Ultraviolet A (UVA,315–400 nm) radiation is known to be a complete carcinogen, but in contrast to UVB (280-315 nm) radiation, much of the cell damage is oxygen dependent (mediated through reactive oxygen species), and the dominant premutational DNA lesion(s) remains to be identified. To investigate further the basic differences in UVA and UVB carcinogenesis, we compared in vivo cellular responses, viz. cell cycle progression and transient p53 expression in the epidermis, after UVA1 (340-400 nm) exposure with those after broadband UVB exposure of hairless mice. Using flow cytometry we found a temporary suppression of bromodeoxyuridine (BrdU) uptake in S-phase cells both after UVB and UVA1 irradiation, which only in the case of UVB is followed by an increase to well over control levels. With equally erythemogenic doses (1-2 MED), the modulation of BrdU uptake was more profound after UVB than after UVA1 irradiation. Also, a marked transient increase in the percentage of S-phase cells occurred both after UVB and after UVA1 irradiation, but this increase evolved more rapidly after UVA1 irradiation. Further, p53 expression increased both after UVB and UVA1 irradiations, with peak expression already occurring from 12 to 24 h after UVA1 exposure and around 24 h after UVB exposure. Overall, UVA1 radiation appears to have less of an impact on the cell cycle than UVB radiation, as measured by the magnitude and duration of changes in DNA synthesis and cells in S phase. These differences are likely to reflect basic differences between UVB and UVA1 in genotoxicity and carcinogenic action.  相似文献   

20.
Abstract— UVA irradiation of human lymphocytes induces DNA strand breaks and a portion of these breaks are closed at a slower rate than X-ray induced DNA strand breaks and the strand breaks generated during repair of UVC induced DNA lesions. In addition, the yield of DNA strand breaks in lymphocytes pretreated with UVA radiation and given a subsequent exposure with UVC radiation is higher and shows a slower decrease with increasing repair time in comparison with the expected yield based on additivity between UVA and UVC induced DNA strand breaks. This indicates that UVA delays the closure of the intermediate strand breaks formed in the repair process of UVC induced DNA lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号