首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
高分辨率是光学显微技术发展至今不断追求的目标之一。然而随着当前显微镜系统功能与性能的不断革新,高分辨率与大视场难以同时兼顾的问题日益突出,这个问题极大地限制了其在许多领域的应用。傅里叶叠层显微成像技术(FPM)是近年来发展出的一种新型计算成像技术,其能通过同时恢复强度和相位分布来提供宽域高分辨率的成像能力。FPM虽然是在2013年才被提出,但是由于其融合了大视场、高分辨率、定量相位成像等诸多优点,近年来已经在光学显微、生物医学、生命科学等领域获得了大量研究和广泛关注。从基本原理、实验系统与成像模式、系统与算法的改进方法等几个方面对FPM的研究现状、应用领域和最新进展进行了综述,并讨论了现存的一些关键问题以及今后可能的研究方向。  相似文献   

2.
现代生物学和生物医学领域迫切需要研制兼顾大视场、高分辨率的显微成像技术和仪器以对生物样品实现跨尺度观测,满足重大科学问题的研究需求。受限于系统的空间带宽积,传统商业显微镜无法满足这一需求,且现有高空间带宽积显微成像系统存在体积庞大、实施成本高昂等问题。本文基于HiLo光切片技术和自主设计的大视场高分辨显微物镜,研发了具有高空间带宽积特点的大视场高分辨HiLo光切片显微成像系统,测试了系统的成像视场和分辨率。应用该系统对小鼠脑切片开展了白光照明明场成像实验,并与OLYMPUS商业显微镜成像结果做了对比;对小麦种子荧光切片开展了光切片成像和宽场荧光成像对比实验。实验结果表明,大视场高分辨HiLo光切片显微成像系统的成像视场达到4.8 mm×3.6 mm (对角视场为6.0 mm),横向分辨率达到0.74μm,轴向分辨率达到4.16μm。大视场高分辨HiLo光切片显微成像系统兼有大视场和高分辨率成像的优势和快速光切片成像的能力,能够对大体积生物样本开展快速三维成像,将为胚胎发育、脑成像、数字病理诊断等研究提供有力的技术支撑。  相似文献   

3.
作为一种典型的无衍射光束,贝塞尔光束具有无衍射和自重构特性,能够提供更长的聚焦长度和一定程度的抗散射能力,在生物医学光学显微成像技术领域获得了越来越多的应用。本文重点关注了贝塞尔光束在生物医学光学显微成像技术中的应用,包括利用其扩展景深能力实现体积样本快速三维成像、利用其抗散射粒子干扰能力实现散射样本的大深度成像以及利用更细聚焦光束能力实现更高分辨率的光学显微成像。首先,概述了贝塞尔光束及其实验室常用的产生方法;然后,总结了近些年贝塞尔光束在生物医学光学显微成像技术中的应用,包括但不限于多光子荧光显微成像、光片荧光显微成像、拉曼显微成像等,既总结了贝塞尔光束在其中发挥的优势,也分析了贝塞尔光束旁瓣带来的干扰问题的消除方案。最后分析和探讨了贝塞尔光束在生物医学光学显微成像技术应用中遇到的问题以及发展前景。  相似文献   

4.
针对机载光电成像系统的大视场高分辨率成像需求,设计一种基于共心球透镜的多尺度广域高分辨率光学成像系统,该光学系统包括大尺度共心球透镜和小尺度次级相机阵列,具有结构紧凑的优点。根据共心球透镜所具有的球差和色差特性,并结合小尺度相机对像差进行进一步校正以分割视场,可以实现大视场高分辨率成像。全系统在受力以及高、低温的条件下进行实验,实验结果表明该成像系统具有良好的稳定性,且全视场范围内的调制传递函数值恒接近于系统的衍射极限,弥散斑半径的方均根值小于探测器的像元尺寸,说明该系统的成像效果良好。所提系统可以有效解决传统机载成像系统难以同时满足大视场和高分辨率的问题,为光学成像系统设计提供一种新思路。  相似文献   

5.
光学显微成像技术在生命科学、生物医学、临床医学诊断和材料科学等领域有着非常广泛的应用。但由于光学衍射极限的存在,传统光学显微镜无法观察到纳米尺度的物质及生命活动,极大地限制科学研究和医学的发展。近年来,随着突破光学衍射极限的超分辨成像技术的不断发展,显微成像分辨率得到不同程度的提高。目前在基于不同原理的各种超高分辨率显微镜中,随机光学重构显微镜(STORM)分辨率最高,可达几十纳米,真正实现了单分子水平检测。着重介绍了STORM超分辨显微成像技术的原理、实验方法及其应用。  相似文献   

6.
生物医学光声成像的研究进展   总被引:2,自引:2,他引:0       下载免费PDF全文
陶超  刘晓峻 《应用声学》2012,31(6):401-409
光声成像是21世纪初发展起来的新兴的生物医学成像技术,它同时具备光学成像和声学成像两者的优点,因而备受关注。本文对生物医学光声成像的发展进行了综述。首先,介绍了光声成像的特点以及相对于广泛应用的光学成像技术和声学成像技术的优点;其次,在成像原理上解释了光声成像优点的成因,并介绍了光声断层成像和光声显微镜这两种典型的光声成像技术;再次,详细介绍了多尺度的光声图像分辨率和成像深度,以及多信息维度的光声成像参数;最后,展望了光声成像在生物医学领域的应用潜力并讨论了其局限性。  相似文献   

7.
高分辨率X射线显微成像及其进展   总被引:1,自引:0,他引:1  
陈洁  柳龙华  刘刚  田扬超 《物理》2007,36(8):588-594
介绍了高分辨率X射线显微成像产生背景和发展过程,着重分析了基于光学元件波带片的放大成像的基本原理,并简述了高分辨率三维成像的有关理论。同时给出国内外高分辨率X射线显微成像研究的最新进展,展望了高分辨率X射线显微成像的应用前景。  相似文献   

8.
冯驰  常军  杨海波 《物理学报》2015,64(3):34201-034201
随着科技发展, 如何解决大视场和高分辨率之间的矛盾成为了众多科技人员的研究重心之一, 本文提出了双小凹成像系统的概念, 在传统仿真人眼的单小凹成像系统的基础上, 通过引入反射式液晶空间光调制器对光学系统进行两个视场内波像差的调制, 改善对应的像差, 从而实现了大视场内低分辨率成像的条件下, 在两个特定的视场内满足高分辨率成像, 因此可解决大视场和高分辨率的矛盾.本文通过设计一个参考波长为587 nm, 视场为60° (即± 30°),F数为F/8, 焦距为60 mm的双小凹光学成像系统, 并利用CODE V软件模拟仿真实现了5°和17°双视场高分辨率成像, 其余视场低分辨率成像, 并以32×32的采样分辨率计算了该系统的衍射效率, 验证了设计方法的科学性和准确性.  相似文献   

9.
激光扫描共焦显微术和多光子显微术等新的显微成像技术可以对厚的生物样品实现光学断层成像 ,因而在生物医学诊断领域具有重要的应用前境。在Fried的一维分辨度理论的基础上 ,系统地讨论了运用共焦扫描荧光显微术在进行光学断层成像时 ,其光学断层平面分辨度与信噪比之间的定量关系 ,建立了实际显微成像系统平面测量精度的定量计算方法。所得出的结果对于选择共焦扫描显微成像系统的最佳参数及评价所设计的显微成像系统的性能具有重要的意义。  相似文献   

10.
荧光显微成像技术的生物医学应用离不开荧光染料的设计与开发。有机小分子荧光染料因其易于修饰、生物相容性好、光物理性质优异等特点,在细胞生物成像领域受到了广泛关注。随着超分辨荧光显微镜的发展和技术的进步,使得荧光显微成像突破了光学衍射极限,可以获得更为精准的生物分子学信息,观察纳米尺度下亚细胞器之间的相互作用。根据不同的成像原理,科学家开发出了单分子定位成像技术、受激辐射损耗成像技术、结构光照明技术等超分辨荧光显微技术。这些技术在细胞荧光显微成像领域的应用与发展,同时对有机小分子荧光染料的设计与开发提出了新要求。本文介绍了主流超分辨荧光显微技术的原理,总结已发表的超分辨荧光显微成像荧光染料的结构和光物理性质特点,归纳了其设计要求,旨在为新型荧光染料的设计提供参考。  相似文献   

11.
徐伟  袁群  高志山  于颢彪  孙一峰  屈艺 《应用光学》2019,40(6):1139-1151
受衍射极限的影响,传统光学显微镜的分辨率最高约为波长的一半,突破衍射极限,获得更高的成像分辨率是近年来显微成像领域的研究热点。相比于其他超分辨显微成像方式,基于微球透镜的超分辨显微成像方式具有简单直接、免标记等优点。主要介绍国内外研究团队将微球与传统的光学显微镜结合实现超分辨显微成像的研究进展,从微球透镜参数选择、成像方案、成像分辨率、成像视场及成像机理等多角度进行总结与比对;并结合课题组工作,介绍了将微球透镜与干涉显微技术相结合的三维超分辨检测技术,阐述了Linnik型与Mirau型两种检测光路原理,分析了三维超分辨检测的效果;展望了微球透镜超分辨显微技术在显微成像与显微干涉检测两个方面待解决的问题与发展方向。  相似文献   

12.
殷杰  陶超  刘晓峻 《物理学报》2015,64(9):98102-098102
光声成像兼具声学成像和光学成像两者的优点, 因而成为近十年来发展最迅速的生物医学成像技术之一. 本文介绍了光声成像的特点及其相对于广泛应用的光学成像技术和声学成像技术的优点; 其次, 解释了光声成像的成像原理, 在此基础上介绍了光声断层成像和光声显微镜这两种典型的光声成像方案, 并介绍了它们的技术特点; 然后, 介绍了光声成像对生物组织的生化特性、组织力学特性、血液流速分布、温度分布参数、微结构特性等多信息参量的提取能力, 及其在生物系统的结构成像、功能成像、代谢成像、分子成像、基因成像等多领域的应用; 最后, 展望了光声成像在生物医学领域的应用潜力并讨论了其局限性.  相似文献   

13.
刘雄波  林丹樱  吴茜茜  严伟  罗腾  杨志刚  屈军乐 《物理学报》2018,67(17):178701-178701
由于荧光寿命不受探针浓度、激发光强度和光漂白效应等因素影响,荧光寿命显微成像技术(fluorescence lifetime imaging microscopy, FLIM)在监测微环境变化、反映分子间相互作用方面具有高特异性、高灵敏度、可定量测量等优点,近年来已被广泛应用于生物医学等领域.然而,尽管FLIM的发明和发展已历经数十年时间,其在实际应用中仍然面临着许多挑战.例如,其成像分辨率受衍射极限限制,而其成像速度与成像质量和寿命测量精度则存在相互制约的关系.近几年来,相关硬件和软件的快速发展及其与其他光学技术的结合,极大地推动了FLIM技术及其应用的新发展.本文简要介绍了基于时域和频域的不同寿命探测方法的FLIM技术的基本原理及特点,在此基础上概述了该技术的最新研究进展,包括其成像性能的提升和在生物医学应用中的研究现状,详细阐述了近几年来研究者们通过硬件和软件算法的改进以及与自适应光学、超分辨成像技术等新型光学技术的结合来提升FLIM的成像速度、寿命测量精度、成像质量和空间分辨率等方面所做的努力,以及FLIM在生物医学基础研究、疾病诊断与治疗、纳米材料的生物医学研究等方面的应用,最后对其未来发展趋势进行了展望.  相似文献   

14.
针对单幅图像进行了无透镜显微成像的重构算法研究,介绍了无透镜显微成像系统实验装置和ASM(angle spectrum method)、改编后的L-R(Lucy-Richardson)两种重构算法。对比两种算法重构后的USAF分辨率板图像的分辨率,利用瑞利判据得出ASM获得的振幅图分辨率最高(即3.10 μm),且计算用时最少(即0.9 s),证明了ASM为最佳的单幅无透镜显微重构算法。其次,利用无透镜显微成像系统结合ASM重构的方法,进行细胞成像实验。该无透镜成像视场为5×显微镜的4.4倍,且分辨率介于5×及10×光学显微镜之间,统计学优势明显,在生物医学领域具有广阔的应用前景。  相似文献   

15.
为了实现对人眼视网膜的高分辨率成像,解决偏振能量损失、成像视场小和普适性差等问题,对液晶自适应光学技术及其在人眼视网膜成像中的应用进行了研究。通过开环光路的设计方案,避免了闭环液晶自适应系统的偏振光能量损失;在光路中加入可变视场光阑,利用小视场照明进行波前探测、大视场照明进行像差校正和成像的方法扩大了成像视场;使用脉冲光照明的方案减小曝光量;通过偏振光照明提高能量利用率、等效无穷远视标配合补偿镜以及改进后的视标提高盯视稳定性等一系列方法,提高系统普适性。校正后成像的清晰度和对比度获得了明显提高;高分辨率眼底成像视场直径从200 μm扩大到500 μm;曝光量减小到原来的1/2~1/3;对前期难以获得清晰成像的样本,取得了效果良好的视网膜视觉细胞自适应图像。  相似文献   

16.
荧光显微成像技术具有标记能力强、信号强度高、实验成本低、成像过程简单且从活体到离体均可成像等特点,在肿瘤细胞成像、药物分布体内探测等生物学分析成像研究中应用广泛,但如何同时兼具宽视场和高分辨率是当前荧光显微成像领域的一大难点.平面硅波导被发现可实现超薄样品大范围成像,然而其需要溅射沉积或是离子束刻蚀等制备工艺,相关工艺复杂且设备昂贵.本文设计了一种基于皮秒激光直写的平面波导型荧光显微装置,利用皮秒激光刻蚀玻璃表层快速制备微米级沟槽,进一步通过旋涂SU-8光刻胶实现低成本、批量化制备玻璃基平面波导.通过调整激光加工功率、频率、扫描速度等参数可以定制波导直径和深度.采用罗丹明B荧光分子的显微探测实验,验证了该激光直写玻璃基平面波导完全满足高分辨率和大视场的生物成像需要,这种简易快速的加工手段能够有效提升荧光成像领域的经济效益和社会效益.  相似文献   

17.
结构光照明显微镜(Structured Illumination Microscopy,SIM)通过结构化照明在频率域以空间混频的方式将物体高频信息载入光学系统的探测通带内实现突破衍射极限的超分辨光学显微成像。SIM凭借其较低的激发光强、对荧光染料的非特异性需求以及快速的宽场成像优势已成为活细胞超分辨光学显微成像方面应用最多的技术。本文系统回顾了SIM的技术进展,对SIM的基本原理与实现方法进了详细的分析,重点介绍了本课题组研发的基于光谱分辨的单光子激发超分辨显微镜和结合自适应光学的双光子激发超分辨显微镜这两种最新的SIM技术,最后简要讨论了SIM技术在生物成像中的应用及未来发展方向。  相似文献   

18.
傅里叶叠层显微成像技术(FPM)是一种新型显微成像技术,该方法巧妙地结合了相位恢复算法和合成孔径的理念,解决了大视场与高分辨率难以兼备的问题.在传统计算中,往往将FPM成像过程近似为相干成像,即将LED视为点光源,进而相干传递函数作为最优解的频谱支持域约束.但是,严格来说,LED是扩展的非相干光源,因此这种不恰当的近似...  相似文献   

19.
为了实现对人眼视网膜的高分辨率成像,解决偏振能量损失、成像视场小和普适性差等问题,对液晶自适应光学技术及其在人眼视网膜成像中的应用进行了研究。通过开环光路的设计方案,避免了闭环液晶自适应系统的偏振光能量损失;在光路中加入可变视场光阑,利用小视场照明进行波前探测、大视场照明进行像差校正和成像的方法扩大了成像视场;使用脉冲光照明的方案减小曝光量;通过偏振光照明提高能量利用率、等效无穷远视标配合补偿镜以及改进后的视标提高盯视稳定性等一系列方法,提高系统普适性。校正后成像的清晰度和对比度获得了明显提高;高分辨率眼底成像视场直径从200μm扩大到500μm;曝光量减小到原来的1/2~1/3;对前期难以获得清晰成像的样本,取得了效果良好的视网膜视觉细胞自适应图像。  相似文献   

20.
徐明飞  黄玮 《中国光学》2014,7(6):936-941
为了同时实现成像系统的大视场、长焦距和高分辨率,设计了基于同心球透镜的四镜头探测器阵列拼接成像系统.首先,阐述了四镜头探测器阵列拼接方案的原理;介绍了同心球透镜的结构特点,阐述了其成像优点.然后,完成了满足实际拼接应用的同心球广角、长焦成像系统(拼接子系统)的光学设计.最后,给出了拼接子系统的像质评价并对其进行公差分析.结果表明:拼接后的系统可实现100 mm焦距和120°视场成像.该系统解决了大视场和长焦距之间的矛盾,可实现超高像素成像,相对于传统光电成像系统具有巨大的优势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号