首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dual Brønsted/Lewis acid catalysis involving environmentally benign, readily accessible protic acid and iron promotes site-selective tert-butylation of electron-rich arenes using di-tert-butylperoxide. This transformation inspired the development of a synergistic Brønsted/Lewis acid catalyzed aromatic alkylation that fills a gap in the Friedel–Crafts reaction literature by employing unactivated tertiary alcohols as alkylating agents, leading to new quaternary carbon centers. Corroborated by DFT calculations, the Lewis acid serves a role in enhancing the acidity of the Brønsted acid. The use of non-allylic, non-benzylic, and non-propargylic tertiary alcohols represents an underexplored area in Friedel–Crafts reactivity.

Dual Brønsted/Lewis acid catalysis involving environmentally benign, readily accessible protic acid and iron promotes site-selective tert-alkylation of arenes using di-tert-butylperoxide and tertiary alcohols.  相似文献   

2.
The Lewis/Brønsted catalytic properties of the Metal–Organic Framework (MOF) nodes can be tuned by simply controlling the solvent employed in the synthetic procedure. In this work, we demonstrate that Hf-MOF-808 can be prepared from a material with a higher amount of Brønsted acid sites, via modulated hydrothermal synthesis, to a material with a higher proportion of unsaturated Hf Lewis acid sites, via modulated solvothermal synthesis. The Lewis/Brønsted acid properties of the resultant metallic clusters have been studied by different characterization techniques, including XAS, FTIR and NMR spectroscopies, combined with a DFT study. The different nature of the Hf-MOF-808 materials allows their application as selective catalysts in different target reactions requiring Lewis, Brønsted or Lewis–Brønsted acid pairs.

The Brønsted/Lewis acid properties of Hf-MOF-808 can be tuned by simply controlling the solvent employed in its synthesis, with direct catalytic implications on the activity and selectivity of organic reactions sensitive to the active site nature.  相似文献   

3.
Most ligand designs for reactions catalyzed by (NHC)Cu–H (NHC = N-heterocyclic carbene ligand) have focused on introducing steric bulk near the Cu center. Here, we evaluate the effect of remote ligand modification in a series of [(NHC)CuH]2 in which the para substituent (R) on the N-aryl groups of the NHC is Me, Et, tBu, OMe or Cl. Although the R group is distant (6 bonds away) from the reactive Cu center, the complexes have different spectroscopic signatures. Kinetics studies of the insertion of ketone, aldimine, alkyne, and unactivated α-olefin substrates reveal that Cu–H complexes with bulky or electron-rich R groups undergo faster substrate insertion. The predominant cause of this phenomenon is destabilization of the [(NHC)CuH]2 dimer relative to the (NHC)Cu–H monomer, resulting in faster formation of Cu–H monomer. These findings indicate that remote functionalization of NHCs is a compelling strategy for accelerating the rate of substrate insertion with Cu–H species.

Remote modification of an N-heterocyclic carbene ligand with bulky or electron-rich groups in [(NHC)Cu(μ-H)]2 increases the rate of substrate insertion, which kinetics studies suggest arises from changes in the Cu–H monomer–dimer equilibrium.  相似文献   

4.
In ion pairing catalysis, the structures of late intermediates and transition states are key to understanding and further development of the field. Typically, a plethora of transition states is explored computationally. However, especially for ion pairs the access to energetics via computational chemistry is difficult and experimental data is rare. Here, we present for the first time extensive NMR spectroscopic insights about the ternary complex of a catalyst, substrate, and reagent in ion pair catalysis exemplified by chiral Brønsted acid-catalyzed transfer hydrogenation. Quantum chemistry calculations were validated by a large amount of NMR data for the structural and energetic assessment of binary and ternary complexes. In the ternary complexes, the expected catalyst/imine H-bond switches to an unexpected O–H–N structure, not yet observed in the multiple hydrogen-bond donor–acceptor situation such as disulfonimides (DSIs). This arrangement facilitates the hydride transfer from the Hantzsch ester in the transition states. In these reactions with very high isomerization barriers preventing fast pre-equilibration, the reaction barriers from the ternary complex to the transition states determine the enantioselectivity, which deviates from the relative transition state energies. Overall, the weak hydrogen bonding, the hydrogen bond switching and the special geometrical adaptation of substrates in disulfonimide catalyst complexes explain the robustness towards more challenging substrates and show that DSIs have the potential to combine high flexibility and high stereoselectivity.

In ion pairing catalysis, the structures of advanced intermediates are often not accessible. Here, we present a combined experimental and computational study of ternary complexes in Brønsted acid catalysis, which show unexpected H-bond switching.  相似文献   

5.
We report herein catalytic asymmetric transformations of racemic α-borylmethyl-(E)-crotylboronate. The Brønsted acid-catalyzed kinetic resolution–allylboration reaction sequence of the racemic reagent gave (Z)-δ-hydroxymethyl-anti-homoallylic alcohols with high Z-selectivities and enantioselectivities upon oxidative workup. In parallel, enantioconvergent pathways were utilized to synthesize chiral nonracemic 1,5-diols and α,β-unsaturated aldehydes with excellent optical purity.

We report herein catalytic asymmetric transformations of racemic α-borylmethyl-(E)-crotylboronate.  相似文献   

6.
Aqueous room temperature phosphorescence (aRTP) from purely organic materials has been intriguing but challenging. In this article, we demonstrated that the red aRTP emission of 2Br–NDI, a water-soluble 4,9-dibromonaphthalene diimide derivative as a chloride salt, could be modulated by anion–π and intermolecular electronic coupling interactions in water. Specifically, the rarely reported stabilization of anion–π interactions in water between Cl and the 2Br–NDI core was experimentally evidenced by an anion–π induced long-lived emission (λAnion–π) of 2Br–NDI, acting as a competitive decay pathway against the intrinsic red aRTP emission (λPhos) of 2Br–NDI. In the initial expectation of enhancing the aRTP of 2Br–NDI by inclusion complexation with macrocyclic cucurbit[n]urils (CB[n]s, n = 7, 8, 10), we surprisingly found that the exclusion complexation between CB[8] and 2Br–NDI unconventionally endowed the complex with the strongest and longest-lived aRTP due to the strong intermolecular electronic coupling between the nπ* orbit on the carbonyl rims of CB[8] and the ππ* orbit on 2Br–NDI in water. It is anticipated that these intriguing findings may inspire and expand the exploration of aqueous anion–π recognition and CB[n]-based aRTP materials.

The aqueous room temperature phosphorescence of 2Br–NDI is modulated by long-lived-emitting anion–π interactions and tremendously enhanced by intermolecular electronic coupling interactions with the ISC-boosting carbonyl rims of CB[8] host.  相似文献   

7.
The mechanism of [2 + 2] cycloadditions activated by visible light and catalyzed by bis-cyclometalated Rh(iii) and Ir(iii) photocatalysts was investigated, combining density functional theory calculations and spectroscopic techniques. Experimental observations show that the Rh-based photocatalyst produces excellent yield and enantioselectivity whereas the Ir-photocatalyst yields racemates. Two different mechanistic features were found to compete with each other, namely the direct photoactivation of the catalyst–substrate complex and outer-sphere triplet energy transfer. Our integrated analysis suggests that the direct photocatalysis is the inner working of the Rh-catalyzed reaction, whereas the Ir catalyst serves as a triplet sensitizer that activates cycloaddition via an outer-sphere triplet excited state energy transfer mechanism.

The mechanism of [2 + 2] cycloadditions activated by visible light and catalyzed by bis-cyclometalated Rh(iii) and Ir(iii) photocatalysts was investigated, combining density functional theory calculations and spectroscopic techniques.  相似文献   

8.
While chiral allylic organophosphorus compounds are widely utilized in asymmetric catalysis and for accessing bioactive molecules, their synthetic methods are still very limited. We report the development of asymmetric nickel/Brønsted acid dual-catalyzed hydrophosphinylation of 1,3-dienes with phosphine oxides. This reaction is characterized by an inexpensive chiral catalyst, broad substrate scope, and high regio- and enantioselectivity. This study allows the construction of chiral allylic phosphine oxides in a highly economic and efficient manner. Preliminary mechanistic investigations suggest that the 1,3-diene insertion into the chiral Ni–H species is a highly regioselective process and the formation of the chiral C–P bond is an irreversible step.

Asymmetric hydrophosphinylation of 1,3-dienes with phosphine oxides using an inexpensive chiral catalyst has been demonstrated, providing access to chiral allylic phosphine oxides with broad substrate scope and high regio- and enantioselectivity.  相似文献   

9.
Natural enzymes control the intrinsic reactivity of chemical reactions in the natural environment, giving only the necessary products. In recent years, challenging research on the reactivity control of terpenes with structural diversity using artificial host compounds that mimic such enzymatic reactions has been actively pursued. A typical example is the acid-catalyzed olefin isomerization of (+)-limonene, which generally gives a complex mixture due to over-isomerization to thermodynamically favored isomers. Herein we report a highly controlled conversion of (+)-limonene by kinetic suppression of over-isomerization in a confined space of a porous metal–macrocycle framework (MMF) equipped with a Brønsted acid catalyst. The terminal double bond of (+)-limonene migrated to one neighbor, preferentially producing terpinolene. This reaction selectivity was in stark contrast to the homogeneous acid-catalyzed reaction in bulk solution and to previously reported catalytic reactions. X-ray structural analysis and examination of the reaction with adsorption inhibitors suggest that the reactive substrates may bind non-covalently to specific positions in the confined space of the MMF, thereby inhibiting the over-isomerization reaction. The nanospaces of the MMF with substrate binding ability are expected to enable highly selective synthesis of a variety of terpene compounds.

A porous metal–macrocycle framework (MMF) equipped with a Brønsted acid catalyst in nanochannels enables highly selective isomerization of limonene to terpinolene by kinetically suppressing over-isomerization at confined acid sites.  相似文献   

10.
We report the first asymmetric sulfa-Michael addition (SMA) reactions using a chiral N-heterocyclic carbene (NHC) as a non-covalent organocatalyst. We demonstrate that a triazolium salt derived NHC functions as an excellent Brønsted base to promote enantioselective carbon–sulfur bond formation. The reaction is applicable to a wide range of thiols and electrophilic olefins. Notably, quaternary chiral centers bearing both an S atom and a CF3 group were synthesized with excellent asymmetric control. Mechanistic studies suggest that the facial discrimination is likely to be guided by non-covalent interactions: hydrogen bonding and π–π stacking.  相似文献   

11.
A strategy for overcoming the limitation of the Morita–Baylis–Hillman (MBH) reaction, which is only applicable to electron-deficient olefins, has been achieved via visible-light induced photoredox catalysis in this report. A series of non-electron-deficient olefins underwent the MBH reaction smoothly via a novel photoredox-quinuclidine dual catalysis. The in situ formed key β-quinuclidinium radical intermediates, derived from the addition of olefins with quinuclidinium radical cations, are used to enable the MBH reaction of non-electron-deficient olefins. On the basis of previous reports, a plausible mechanism is suggested. Mechanistic studies, such as radical probe experiments and density functional theory (DFT) calculations, were also conducted to support our proposed reaction pathways.

A strategy for overcoming the limitation of the Morita–Baylis–Hillman (MBH) reaction, which is only applicable to electron-deficient olefins, has been achieved via visible-light induced photoredox catalysis in this report.  相似文献   

12.
Fe, Co, and Mn hydride-initiated radical olefin additions have enjoyed great success in modern synthesis, yet the extension of other hydrogen radicalophiles instead of olefins remains largely elusive. Herein, we report an efficient Fe-catalyzed intramolecular isonitrile–olefin coupling reaction delivering 3-substituted indoles, in which isonitrile was firstly applied as the hydrogen atom acceptor in the radical generation step by MHAT. The protocol features low catalyst loading, mild reaction conditions, and excellent functional group tolerance.

A mild and efficient method has been developed to synthesize 3-substituted indoles via an Fe-catalyzed radical isonitrile–olefin coupling reaction initiated by MHAT to isonitriles.  相似文献   

13.
BINOL derived chiral phosphoric acids (CPAs) are a prominent class of catalysts in the field of asymmetric organocatalysis, capable of transforming a wide selection of substrates with high stereoselectivities. Exploiting the Brønsted acidic and basic dual functionality of CPAs, substrates with both a hydrogen bond acceptor and donor functionality are frequently used as the resulting bidentate binding via two hydrogen bonds is expected to strongly confine the possible structural space and thus yield high stereoselectivities. Despite the huge success of CPAs and the popularity of a bidentate binding motif, experimental insights into their organization and origin of stereoinduction are scarce. Therefore, in this work the structural space and hydrogen bonding of CPAs and N-(ortho-hydroxyaryl) imines (19 CPA/imine combinations) was elucidated by low temperature NMR studies and corroborated by computations. The postulated bidentate binding of catalyst and substrate by two hydrogen bonds was experimentally validated by detection of trans-hydrogen bond scalar couplings. Counterintuitively, the resulting CPA/imine complexes showed a broad potential structural space and a strong preference towards the formation of [CPA/imine]2 dimers. Molecular dynamics simulations showed that in these dimers, the imines form each one hydrogen bond to two CPA molecules, effectively bridging them. By finetuning steric repulsion and noncovalent interactions, rigid and well-defined CPA/imine monomers could be obtained. NOESY studies corroborated by theoretical calculations revealed the structure of that complex, in which the imine is located in between the 3,3′-substituents of the catalyst and one site of the substrate is shielded by the catalyst, pinpointing the origin or stereoselectivity for downstream transformations.

Brønsted acid/substrate complexes with bidentate binding motif were studied by NMR and molecular dynamics. A variety of different arrangements was found, including bridged dimers and monomers were characterised in detail.  相似文献   

14.
Catalysis is central to contemporary synthetic chemistry. There has been a recent recognition that the rates of photochemical reactions can be profoundly impacted by the use of Lewis acid catalysts and co-catalysts. Herein, we show that Brønsted acids can also modulate the reactivity of excited-state organic reactions. Brønsted acids dramatically increase the rate of Ru(bpy)32+-sensitized [2 + 2] photocycloadditions between C-cinnamoyl imidazoles and a range of electron-rich alkene reaction partners. A combination of experimental and computational studies supports a mechanism in which the Brønsted acid co-catalyst accelerates triplet energy transfer from the excited-state [Ru*(bpy)3]2+ chromophore to the Brønsted acid activated C-cinnamoyl imidazole. Computational evidence further suggests the importance of driving force as well as geometrical reorganization, in which the protonation of the imidazole decreases the reorganization penalty during the energy transfer event.

Brønsted acids can catalyze triplet energy transfer reactions, and DFT computations suggest the unexpected importance of reorganization energy for catalysis.  相似文献   

15.
Cheol Hong Cheon 《Tetrahedron》2010,66(24):4257-6720
New strong Brønsted acids derived from a squaric acid scaffold bearing different perfluoroalkanesulfonyl groups have been developed and applied to several organic reactions. These squaramides are bench-stable and exhibit much higher reactivities in several organic reactions than squaric acid itself. N,N-Bis(trifluoromethanesulfonyl)squaramide 2a was applied to the Mukaiyama aldol reaction and Mukaiyama Michael reaction. Mechanistic studies revealed that the Brønsted acid might be the predominant catalyst through direct protonation of carbonyl compound by the acid itself rather than the silylated Brønsted acid. The utility of this acid 2a was further extended to Hosomi-Sakurai allylation of aldehydes and a carbonyl-ene reaction. Furthermore, other squaramides 2b and c bearing longer perfluoroalkyl chains have been developed, which are also bench-stable and displayed similar reactivities with squaramide 2a in several organic reactions.  相似文献   

16.
In this Perspective, we discuss recent syntheses of 5- and 6-membered aromatic heterocycles via multicomponent reactions (MCRs) that are catalyzed by group 4–8 transition metals. These MCRs can be categorized based on the substrate components used to generate the cyclized product, as well as on common mechanistic features between the catalyst systems. These particular groupings are intended to highlight mechanistic and strategic similarities between otherwise disparate transition metals and to encourage future work exploring related systems with otherwise-overlooked elements. Importantly, in many cases these early- to mid-transition metal catalysts have been shown to be as effective for heterocycle syntheses as the later (and more commonly implemented) group 9–11 metals.

In this Perspective, we discuss recent syntheses of 5- and 6-membered aromatic heterocycles via multicomponent reactions (MCRs) catalyzed by group 4–8 transition metals, with a focus on common mechanisms and synthetic strategies across the series.  相似文献   

17.
2-Fluorenyl benzoates were recently shown to undergo C–H bond oxidation through intramolecular proton transfer coupled with electron transfer to an external oxidant. Kinetic analysis revealed unusual rate-driving force relationships. Our analysis indicated a mechanism of multi-site concerted proton–electron transfer (MS-CPET) for all of these reactions. More recently, an alternative interpretation of the kinetic data was proposed to explain the unusual rate-driving force relationships, invoking a crossover from CPET to a stepwise mechanism with an initial intramolecular proton transfer (PT) (Costentin, Savéant, Chem. Sci., 2020, 11, 1006). Here, we show that this proposed alternative pathway is untenable based on prior and new experimental assessments of the intramolecular PT equilibrium constant and rates. Measurement of the fluorenyl 9-C–H pKa, H/D exchange experiments, and kinetic modelling with COPASI eliminate the possibility of a stepwise mechanism for C–H oxidation in the fluorenyl benzoate series. Implications for asynchronous (imbalanced) MS-CPET mechanisms are discussed with respect to classical Marcus theory and the quantum-mechanical treatment of concerted proton–electron transfer.

2-Fluorenyl benzoates were recently shown to undergo C–H bond oxidation through intramolecular proton transfer coupled with electron transfer to an external oxidant.  相似文献   

18.
The activation of metal-oxo species with Lewis acids is of current interest. In this work, the effects of a weak Brønsted acid such as CH3CO2H and a weak Lewis acid such as Ca2+ on C–H bond activation by KMnO4 have been investigated. Although MnO4 is rather non-basic (pKa of MnO3(OH) = −2.25), it can be activated by AcOH or Ca2+ to oxidize cyclohexane at room temperature to give cyclohexanone as the major product. A synergistic effect occurs when both AcOH and Ca2+ are present; the relative rates for the oxidation of cyclohexane by MnO4/AcOH, MnO4/Ca2+ and MnO4/AcOH/Ca2+ are 1 : 73 : 198. DFT calculations show that in the active intermediate of MnO4/AcOH/Ca2+, MnO4 is H-bonded to 3 AcOH molecules, while Ca2+ is bonded to 3 AcOH molecules as well as to an oxo ligand of MnO4. Our results also suggest that these synergistic activating effects of a weak Brønsted acid and a weak Lewis acid should be applicable to a variety of metal-oxo species.

The activation of metal-oxo species with Lewis acids is of current interest.  相似文献   

19.
Juan Li  Qing-Xiang Guo 《Tetrahedron》2008,64(49):11167-11174
A combined theoretical and experimental approach was used to systematically study the Brønsted acid-promoted aziridination of electron-deficient olefins. It was found that Brønsted acid-promoted aziridination of electron-deficient olefins proceeded through the attack of the internal nitrogen of the azide to the terminal carbon of protonated olefin, which afforded an acyclic adduct that subsequently discharged N2 to produce the aziridine ring. The basicity of the electron-deficient olefins is an important parameter to determine the efficiency of Brønsted acid-promoted aziridination. More basic carbonyl compounds including vinyl ketones and acrylamides were predicted to be readily activated by Brønsted acid such as TfOH, whereas less basic carbonyl compounds were predicted to be poor substrates. Significantly, all these theoretical predictions were demonstrated to be consistent with the experimental data. Furthermore, a systematic evaluation of TfOH-promoted aziridination of acrylamides was performed, which established a new, single-step method for the preparation of a number of aziridine-2-carboxamides.  相似文献   

20.
Retraction of ‘Transition-metal-free synthesis of conjugated microporous polymers via amine-catalyzed Suzuki–Miyaura coupling reaction’ by Qingmin Liu et al., Chem. Sci., 2021, DOI: 10.1039/d1sc03970a.

We, the named authors, hereby wholly retract this Chemical Science article. This article reports the synthesis of conjugated microporous polymers using an amine-catalyzed Suzuki–Miyaura coupling reaction. This article builds upon findings first reported by Xu et al.1 and invokes the same mechanism for Pd-free polymer synthesis. Since the publication of our article in Chemical Science, we have been made aware of concerns regarding the conclusions of the above-mentioned Nature Catalysis article, disputing the mechanisms and claims that the reactions reported are not Pd-free.2,3 We, as the authors of this Chemical Science article, have considered these claims and, after further investigation, acknowledge that we cannot exclude the influence of residual Pd for the Suzuki coupling reaction involved. Therefore, there is sufficient doubt around the main conclusion of our work as a ‘transition-metal-free synthesis’ and so we wish to retract this article.Signed: Qingmin Liu, Shangbin Jin and Bien Tan, 18th November 2021.Retraction endorsed by May Copsey, Executive Editor, Chemical Science.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号