首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A coarse-grained model is used to study the conformational properties of semiflexible polymers with amphiphilic monomer units containing both hydrophilic and hydrophobic interaction sites. The hydrophobically driven conformational transitions are studied using molecular dynamics simulations for the chains of varying stiffness, as characterized by intrinsic Kuhn segment lengths that vary over a decade. It is shown that the energy of hydrophobic attraction required for the realization of the coil-to-globule transition increases with increasing chain stiffness. For rather stiff backbone, the coil-to-globule transition corresponds to a first order phase transition. We find that depending on the chain stiffness, a variety of thermodynamically stable anisometric chain morphologies are possible in a solvent selectively poor for hydrophobic sites of amphiphilic monomer units. For flexible chains, the amphiphilic polymer forms a cylindrical globule having blob structure with nearly spherical blobs. With increasing stiffness, the number of blobs composing the globule decreases and the shape of blobs transforms into elongated cylinder. Further increase in stiffness leads to compaction of macromolecules into a collagenlike structure when the chain folds itself several times and different strands wind round each other. In this state, the collagenlike structures coexist with toroidal globules, both conformations having approximately equal energies.  相似文献   

2.
The collapse of a homopolymer gaussian chain into a globule is represented as a transition between two states, viz., extended and collapsed. Appropriately, this model has been labeled as the all-or-none view of chain collapse. In the collapsed state, the single polymer partition function is expressed by a single Mayer diagram with the maximum number of f-bonds arising from nonbonded square well interactions. Our target is the dependence of the transition temperature on chain length and the interaction range of the square well, as indicated through the behavior of the radius of gyration and the constant volume heat capacity. Properties of the collapse transition are calculated exactly for chains with three to six backbone atoms and heuristically for long chains using arguments derived from the small chains and from conditions of integrability. Comparison with simulation studies is made.  相似文献   

3.
The effect of confinement, number of branches (functionality), and size of the molecules on various properties as a function of temperature of star-branched polymers confined between two walls was studied using Monte Carlo simulations with the parallel tempering technique. The coil-to-globule transition and the liquidlike to solidlike transition, similar to those observed for linear chains, were characterized in all systems by changes in the heat capacity, internal energy, and radius of gyration. The transitions were also characterized by the most probable isomeric structure at a given temperature. The radius of gyration of the star polymers was smaller than the values of linear chains when the number of arms f increased. For star chains with more than f=5 arms the values of the radius of gyration, and therefore the size of the molecules, were similar for every condition of confinement studied, especially at higher temperatures. As confinement was increased, the difference in the radius of gyration of linear chains and star polymers became even larger. The coil-to-globule transition temperatures shifted to higher temperatures as the size of the chains and the number of arms in a molecule were increased. Effects of confinement were higher on the properties of the system at the smallest separations (less than twice the monomer diameter), where the coil-to-globule transition shifted to lower temperatures. The liquidlike to solidlike transition was present at almost the same temperature for different conditions of confinement, chain size, and number of arms. The behavior of the systems for separations between the walls greater than five bead diameters was similar to the behavior in the unconfined case. Hence, no considerable effect of confinement was found above this separation.  相似文献   

4.
We have performed Monte Carlo simulations to study the effect of cyclic architecture on the behavior of homopolymer chains under several conditions of confinement. The collapse of the rings in two stages, a coil-to-globule and a liquidlike-to-solidlike transition, was observed even at extreme confinement. Both transitions were observed at lower temperatures than for linear chains of the same length, 2%-5% lower for unconfined systems, and 10%-15% lower for wall separations below three bond lengths due to the effect of confinement. When the plates separation approached the two-dimensional regime, the coil-to-globule transition shifted to lower temperatures. The inverse trend was observed when the chain length was increased. In the collapsed state, the average size and conformations of linear and cyclic molecules of same length were similar independently of confinement. At temperatures near the coil-to-globule transition, the radius of gyration of unconfined linear chains, [R(g)(2)](linear), became larger than for the cyclic chains, [R(g)(2)](cyclic), and this difference increased considerably with confinement. The radius of gyration ratio [R(g)(2)](linear)/[R(g)(2)](cyclic) in this region decreased rapidly. The decrease was more pronounced and occurred at lower temperatures for slit width confinements. At higher temperatures, in the coil state, the radius of gyration ratio became nearly constant for a given separation, and varied from 0.56 for unconfined systems to 0.47 when the chain was completely confined between the walls. This reduction was attributed to the higher increase in the average size of linear chains with confinement when compared with cyclic chains, due to architectural restrictions.  相似文献   

5.
Poly(N-isopropylacrylamide) (PNIPAM) in dilute aqueous solution undergoes a collapse transition from coil to globule on increasing temperature. Such coil-to-globule collapse is usually considered analogous to the cold renaturation of small globular proteins. In this paper we propose a theoretical approach that is able to reproduce, in a semi-quantitative way, the unusual behavior of PNIPAM, and the observed thermodynamic properties. The procedure is based on two main steps: (i) the characterization of single monomer hydration thermodynamics, interpreted by a balance between the removal of monomer-monomer interactions and the addition of water-monomer interactions, and (ii) a simplified analysis of a lattice self-avoiding walk (SAW) model, which allows to account for the configurational entropy in a controlled way, and hence to relate the microscopic interactions to the “macroscopic” behavior of the polymer chain. The results show that the temperature dependence and magnitude of the interaction parameters that best fit experimental data validate a recently proposed qualitative interpretation of the mechanism of collapse transition for PNIPAM. The latter result turns out to be relevant to support the analogy with the cold renaturation of small globular proteins, and to clarify some important aspects of protein thermodynamics.  相似文献   

6.
When a polymer chain in solution interacts with an atomically smooth solid substrate, its conformational properties are strongly modified and deviate substantially from those of chains in bulk. In this work, the interplay of two competing transitions that affect the conformations of polymer chains near an energetically attractive surface is studied by means of Monte Carlo simulations on a cubic lattice. The transition from an extended to a compact conformation of a polymer chain near an attractive wall, as solubility deteriorates, exhibits characteristics akin to the “coil-to-globule” transition in bulk. An effective θ-temperature is determined. Its role as the transition point is confirmed in a variety of ways. The nature of the coil-to-compact transition is not qualitatively different from that in the bulk. Adsorbed polymer chains may assume “globular” or “pancake” configurations depending on the competition among adsorption strength, cohesive energy, and entropy. In a very relevant range of conditions, the dependence of the adsorbate thickness on chain-length is intermediate between that of 3-d (“semidroplets”) and 2-d (“pancake”) objects. The focus of this study is on rather long polymer chains. Several crucial features of the transitions of the adsorbed chains are N-dependent and various aspects of the adsorption and “dissolution” process are manifested clearly only at the “long chain” limit. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2462–2476, 2009  相似文献   

7.
By combined light scattering and circular dichroism measurements (CD), we have investigated the coil-to-globule transition of the thermosensitive polymer poly(N-isopropylacrylamide) (pNIPAAm) copolymerized with a 1/10 fraction of valine- or leucine-derived groups randomly positioned along the chains. The comonomers provide the pNIPAAm chains with chirality, electric charge, and increased hydrophobicity. For valine-derived copolymers, the coil-globule transition is basically unmodified with respect to pNIPAAm, whereas doping with leucine-derived groups significantly lowers the transition temperature and makes the transition discontinuous. We find the CD signal of the chiral comonomers to cleanly depend on the local chain density. We interpret this behavior as an effect of the whole chain conformation on the conformations accessible to the chiral groups.  相似文献   

8.
高分子单链凝聚成与线团相互穿透的多链凝聚态   总被引:17,自引:5,他引:12  
高分子单链凝聚态由于链内链结构单元间存在范德化吸引作用,高分子链呈打圈链构象,而多链凝聚态由于链内链单元间的吸引作用被与相互穿透的近邻链的单元间吸引作用所屏蔽,高分子链呈高斯链构象。本文简要介绍单链凝聚态试样的制备方法,单链单晶体、单链玻璃体、溶胀的单链高弹态拉伸等的实验观察,并提出从单链凝聚态到多链凝聚态的转变过程问题,即高分子线团的相互穿透过程,目前还缺少基础了解。  相似文献   

9.
采用退火 (Annealing)MonteCarlo方法 ,从高温到低温顺序模拟了简立方格点上考虑最近邻Ising相互作用的磁性高分子链在不同温度的磁性质和构象性质 .磁性高分子链在低温下存在自发磁矩 ,无限长链的临界温度Tc=1 77± 0 0 5J kB.在临界温度附近 ,高分子链经历了从伸展的无规线团到紧缩球体的塌缩相变 .对链的尺寸、形状、近邻数及能量的分析表明 ,高分子链的构象性质从温度Tc=1 77开始发生较明显的变化 ,这表明高分子Ising链的相变是Ising相互作用和链节运动协同作用的结果 .  相似文献   

10.
Monte Carlo simulations have been performed on a self-avoiding simple cubic lattice chain with the nearest-neighbor interactions for a range of chain lengths N from 40 to 1000 segments to investigate equilibrium properties of polymer chains from an athermal to a collapsed state. Both the fraction of segments in the clusters and the number of contacts exhibit the three stage process for the chain collapse, consistent with our previous molecular dynamics simulations of a fully atomistic chain. In the collapse region corresponding to the nearest-neighbor interaction parameter larger than 0.5 for a segment-solvent pair, polymer chains are quite spherical and both ends lie nearly randomized within the sphere. The peak height of the specific heat is proportional to N(In N)3/11, as predicted by the renormalization group theory.  相似文献   

11.
The coil-to-globule transition of two poly(N-isopropylacrylamide) (PNIPAM) ionomers with different ionic contents (0.8 and 4.5 mol %), but similar weight average molar masses, in deionized water was investigated by a combination of static and dynamic light scattering. In spite of the large difference in their ionic contents, both the ionomers have a nearly same lower critical solution temperature (LCST, ∼ 32.5°C). At temperatures higher than the LCST, the ionomer chains undergo a simultaneous intrachain coil-to-globule transition and interchain aggregation to form nanoparticles thermodynamically stable in water. The average size of the nanoparticles decreases respectively as the ionic content increases and the ionomer concentration decreases. The interchain aggregation can be completely suppressed in an extremely dilute ionomer solution (< ∼ 5 × 10−6 g/mL), so that the intrachain coil-to-globule transition leads to the collapse of the ionomer chains into individual single-chain nanoparticles. Our results clearly indicate that there is a hysteresis in the colling process (the globule-to-coil transition). © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1501–1506, 1998  相似文献   

12.
一条大分子链由许多小分子通过共价键连接而成.正是这一"连接"导致了大分子一些独特的物理性质及相关问题.本文希望阐明的就是这样一个小分子物理中没有的知识问题:小分子在溶剂中仅有溶或不溶2个状态;而自60年代起,理论学家们就预言一条柔性大分子链在溶解的状态下,其构象随着溶剂性质变差可以从无规线团蜷缩成一个单链小球.为了证明这一构象变化,实验学家们从70年代末起进行了大量的研究,直至90年代初期仍未观察到稳定的单链蜷缩小球.实验上这一长期悬而未解的问题困惑着众多研究者.甚至有理论学家在1993年报道,当今的样品制备和实验手段无法观察到一个热力学稳定的单链蜷缩小球.中国钱人元先生和一些其他研究者自80年代末期也开始关注与单链有关的问题.我们实验室从1993年开始另辟蹊径,通过制备和采用窄分布的热敏性水溶性高分子超长链,终于在1995年利用激光光散射首次观察到理论上预测的"线团到小球"的构象变化.随后,又揭示了变化过程中存在着一个全新的"融化球"构象以及在单链蜷缩小球中并无理论上预计的额外链互穿和打结.从得到的稳定单链蜷缩小球出发,我们又首次在实验上研究了"小球到线团"的过程,意外地观察到其在准理想状态附近滞后于"线团到小球"的构象变化,并证明该滞后可归于链蜷缩过程中形成的额外链内氢键.最后,借用红外纳秒脉冲激光加热的方法研究了"线团到小球"的蜷缩动力学,并发现其包含了在单个高分子链上"成核"和"粗化"先后2个过程.其中,"成核"过程与链长无关.经过近20年的努力,我们终于基本解决了这一近代高分子物理研究中与知识有关的重要问题,揭示了与其相关的一些大分子特有的物理性质.  相似文献   

13.
A polymer chain tethered to a surface may be compact or extended, adsorbed or desorbed, depending on interactions with the surface and the surrounding solvent. This leads to a rich phase diagram with a variety of transitions. To investigate these transitions we have performed Monte Carlo simulations of a bond fluctuation model with Wang-Landau and umbrella sampling algorithms in a two-dimensional state space. The simulations' density-of-states results have been evaluated for interaction parameters spanning the range from good- to poor-solvent conditions and from repulsive to strongly attractive surfaces. In this work, we describe the simulation method and present results for the overall phase behavior and for some of the transitions. For adsorption in good solvent, we compare with Metropolis Monte Carlo data for the same model and find good agreement between the results. For the collapse transition, which occurs when the solvent quality changes from good to poor, we consider two situations corresponding to three-dimensional (hard surface) and two-dimensional (very attractive surface) chain conformations, respectively. For the hard surface, we compare tethered chains with free chains and find very similar behavior for both types of chains. For the very attractive surface, we find the two-dimensional chain collapse to be a two-step transition with the same sequence of transitions that is observed for three-dimensional chains: a coil-globule transition that changes the overall chain size is followed by a local rearrangement of chain segments.  相似文献   

14.
The effects of the concentration (C) and heating rate on the collapse and association of poly(N-isopropylacrylamide) chains in water have been investigated by use of ultrasensitive differential scanning calorimetry. In the dilute solutions, both the phase transition temperature (Tp) and enthalpy change (DeltaH) increase with the heating rate but decrease with concentration. By extrapolation to zero heating rate and zero concentration, Tp and DeltaH for coil-to-globule transition of a single chain in thermodynamic equilibrium can be obtained. In semidilute solutions, both Tp and DeltaH increase with the heating rate but slightly vary with the concentration. Tp and DeltaH for pure interchain association in equilibrium are obtained by extrapolation to zero heating rate. Our experiments reveal that only intrachain contraction occurs when the concentration is infinitely close to zero. When the concentration is above the overlap concentration (C*), only interchain association exists. In the range 0相似文献   

15.
The equilibrium properties of an isolated polyethylene ring chain are studied by using molecular dynamics (MD) simulations. The results of an 80-bond linear chain are also presented, which are in agreement with previous studies of square-well chains and Lennard-Jones (LJ) homopolymers. Mainly, we focus on the collapse of polyethylene ring chains. At high temperatures, a fully oblate structure is observed for the ring chains with different chain lengths. For such an oblate structure, a shape factor of delta(*)=0.25 and a rodlike scaling relation between the radius of gyration and chain lengths could be deduced easily in theory, and the same results are obtained by our MD simulations. Such an oblate structure can be obtained by Monte Carlo simulation only for sufficient stiff ring chains. When the temperature decreases, an internal energy barrier is observed. This induces a strong peak in the heat capacity, denoting a gas-liquid-like transition. This energy barrier comes mainly from the local monomer-monomer interactions, i.e., the bond-stretching, the bond-bending, and the torsion potentials. A low temperature peak is also observed in the same heat capacity curve, representing a liquid-solid-like transition. These numerical simulation results support a two-stage collapse of polyethylene ring chains; however, the nature should be different from the square-well and LJ ring chains.  相似文献   

16.
The resonance Raman spectra of polymer chains in partially polymerized crystals of 1,6-di-p-toluenesulfonyloxy-2,4-hexadiyne are reported. The polymer chain distortion is deduced using the results obtained previously for fully polymerized samples under tensile strain. Changes in crystal lattice dimensions both parallel and lateral to the polymer chains are found to be important in interpreting the variations in frequency of the Raman-active vibrational modes. Further evidence is found for the resonant interaction of backbone and side-group vibrations reported previously. This interaction is affected by the lateral dimensional changes and is also sensitive to residual strain fields in the monomer crystals. It is not necessary in the interpretation of the Raman spectra to take any account of changes in polymer chain length during polymerization.  相似文献   

17.
A dynamic Monte Carlo simulation of the collapse transition of polymer chains is presented. The chains are represented as self-avoiding walks on the simple cubic lattice with a nearest-neighbor contact potential to model the effect of solvent quality. The knot state of the chains is determined using the knot group procedure presented in the accompanying paper. The equilibrium knot spectrum and the equilibrium rms radius of gyration as functions of the chain length and the contact potential are reported. The collapse transition was studied following quenches from good-to poor-solvent conditions. Our results confirm the prediction that the newly formed globule is not yet at equilibrium, since it has not yet achieved its equilibrium knot spectrum. For our model system, the relaxation of the knot spectrum is about an order of magnitude slower than that of the radius of gyration. The collapse transition is also studied for a model in which both ends of the chain remain in good-solvent conditions. Over the time scale of these simulations, knot formation is frustrated in this inhomogeneous model, verifying that the mechanism of knotting is the tunneling of chain ends in and out of the globule.  相似文献   

18.
Using a Monte‐Carlo simulation of a continuous space Rod Bead Model the interface properties of systems of flexible polymer chains with different sizes of monomers are investigated. An immiscible polymer blend in the strong segregation state is modeled by a double sandwich system of chains differing by an factor of two in the size of the beads and the interfacial tension is calculated by a virial theorem method. The simulation data are compared to self‐consistent mean field and experimental data. The results show that the simulation data agree very satisfactory with mean‐field results. The interfacial tension decreases for asymmetric systems in comparison to symmetric systems with comparable volume contents of monomers and interaction strengths due to a decrease of the effective interaction. The parameters of the investigated systems are close to the properties of PS, PMMA and PI melts. A comparison with experimental results yields a very good agreement with data for PS/PMMA and less satisfactory for PS/PI. Additionally to the interfacial tension we have studied the interfacial width, the deformation of polymer chains near the interface, distributions of chain ends, monomer densities and distributions of centers of mass of chains.

Snapshot of a typical configuration for chains with different monomer sizes and equal number of monomers per chain.  相似文献   


19.
The influence of side‐chain attraction on the conformational properties of two‐dimensional polymer brushes with rigid side chains is investigated using Monte Carlo simulations. Using a rigid backbone, a characteristic interaction strength is determined by investigating the critical interaction energy for the collapse of the side chains onto the backbone. For a flexible backbone, the persistence length of the backbone is found to decrease with increasing attraction, irrespective of whether side‐chain flipping is allowed or not. This result is in good agreement with the theoretical modeling presented before. If side‐chain flipping is allowed, the attraction between the side chains leads to aggregation of successive side chains at one side of the backbone resulting in a characteristic local spiraling of the backbone.  相似文献   

20.
PNIPAM chain collapse depends on the molecular weight and grafting density   总被引:1,自引:0,他引:1  
This study demonstrates that the thermally induced collapse of end-grafted poly(N-isopropylacrylamide) (PNIPAM) above the lower critical solution temperature (LCST) of 32 degrees C depends on the chain grafting density and molecular weight. The polymer was grafted from the surface of a self-assembled monolayer containing the initiator (BrC(CH3)2COO(CH2)11S)2, using surface-initiated atom transfer radical polymerization. Varying the reaction time and monomer concentration controlled the molecular weight, and diluting the initiator in the monolayer altered the grafting density. Surface force measurements of the polymer films showed that the chain collapse above the LCST decreases with decreasing grafting density and molecular weight. At T > LCST, the advancing water contact angle increases sharply on PNIPAM films of high molecular weight and grafting density, but the change is less pronounced with films of low-molecular-weight chains at lower densities. Below the LCST, the force-distance profiles exhibit nonideal polymer behavior and suggest that the brush architecture comprises dilute outer chains and much denser chains adjacent to the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号