首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tandem quadrupole photodissociation mass spectrometer has been used to study photodissociation reactions of Ar+2, Ne+2, and (CO2)+2. The cross sections for photodissociation of Ar+2 exhibited a strong dependence on ion source pressure, varying from 2 × 10 ?18cm2 at 0.1 torr to 6 × 10?19cm2 at 0.5 torr. A large photodissociation cross section (2 × 10?17cm2 for the reaction (CO2)+2 → CO+2+ CO2 was observed at the red end of the visible spectrum (580–620 nm) suggesting that this may be an important reaction in CO2 rich planetary ionspheres such as that of Mars.  相似文献   

2.
Combining a temperature variable 22-pole ion trap with a cold effusive beam of neutrals, rate coefficients k(T) have been measured for reactions of CO2+ ions with H, H2 and deuterated analogues. The neutral beam which is cooled in an accommodator to TACC, penetrates the trapped ion cloud with a well-characterized velocity distribution. The temperature of the ions, T22PT, has been set to values between 15 and 300 K. Thermalization is accelerated by using helium buffer gas. For reference, some experiments have been performed with thermal target gas. For this purpose hydrogen is leaked directly into the box surrounding the trap. While collisions of CO2+ with H2 lead exclusively to the protonated product HCO2+, collisions with H atoms form mainly HCO+. The electron transfer channel H+ + CO2 could not be detected (<20%). Equivalent studies have been performed for deuterium. The rate coefficients for reactions with atoms are rather small. Within our relative errors of less than 15%, they do not depend on the temperature of the CO2+ ions nor on the velocity of the atoms (k(T) lays between 4.5 and 4.7 × 10−10 cm3 s−1 with H as target, and 2.2 × 10−10 cm3 s−1 with D). For collisions with molecules, the reactivity increases significantly with falling temperature, reaching the Langevin values at 15 K. These results are reported as k = α (T/300 K)β with α = 9.5 × 10−10 cm3 s−1 and β = −0.15 for H2 and α = 4.9 × 10−10 cm3 s−1 and β = −0.30 for D2.  相似文献   

3.
Differential cross sections are presented for neutral scattering of K atoms in collisions with Br2 molecules in the energy range from 20 to 150 eV. In addition energy-loss spectra for the scattered K atoms are shown. The differential cross sections show a large peak near the forward direction. The energy-loss spectra point to considerable vibrational excitation at small angles. The results are attributed to reneutralization from an ion-pair state formed during the collision. In some cases this process can involve three potential surface crossings. The experimental results can be reproduced in simple trajectory calculations on diabatic potential surfaces. The calculations show that the forward scattering is rainbow scattering, caused by the internal motion of the Br2? molecular ion during the collision. There is no analog to this rainbow in atom-atom scattering. The internal moti is also responsible for the observed vibrational excitation.  相似文献   

4.
The mobilities of mass-identified H+3 and HeH+ ions in helium and the reaction rate coefficient for HeH+ + H2 → H+3 + He have been measured by a drift-tube quadrupole mass spectrometer at 300 K. The zero-field reduced mobilities of H+3 and HeH+ ions, corrected to 273 K, are 31.0 ± 0.8 and 23.4 ± 0.6 cm2 V?1 s?1 respectively. The reaction rate coefficient was found to be (1.26 + 0.16) × 10?9 cm3s?1 and was observed to be independent of the mean ion kinetic energy in the range from 0.04 to 0.3 eV.  相似文献   

5.
Ab initio calculated values of fundamental vibrational frequencies and zero-point energies are presented for HTD+, D2T+, T2D+, H2T+, T2H+ and T+3.  相似文献   

6.
Integral scattering cross sections have been measured for alkali ions (Li+, Na+ and K+) in the energy range 500–4000 eV scattered by room temperature N2 and CO molecules through effective laboratory angles greater than 5 × 10?3 rad. The repulsive potentials deduced from the cross sections are represented bya practically identical formula for the Na+N2 and Na+CO systems, and for the K+CO systems, respectively, while the repulsive potentials of the Li+N2 system are somewhat smaller than those of the Li+CO system at larger intermolecular distances.  相似文献   

7.
The reactions of methane with the dications C7H62+, C7H72+, and C7H82+ generated by electron ionization of toluene are studied using mass-spectrometry tools. It is shown that the reactivity is dominated by the formation of doubly charged intermediates, which can either eliminate molecular hydrogen to yield doubly charged products or undergo charge-separation reactions leading to the formation of a methyl cation and the corresponding C7Hn+1+ monocation. Typical processes observed for dications, like electron transfer or proton transfer, are largely suppressed. The theoretically derived mechanism of the reaction between C7H62+ and CH4 indicates that the formation of the doubly charged intermediate is kinetically preferred at low internal energies of the reactants. In agreement, the experimental results show a pronounced hydrogen scrambling and dominant formation of the doubly charged products at low collision energies, whereas direct hydride transfer prevails at larger collision energies.  相似文献   

8.
The forward and reverse rate coefficients for the reactions (1) O2H+ + H2 ? H3+ + O2 and (2) O2D+ + D2 ? D3+ + O2 have been determined in a SIFT at 80 and 300 K, from which values of the enthalpy and entropy changes in the reactions have been obtained. The data indicate that the proton affinity of H2 is greater than that of O2 by 0.33 ± 0.04 kcal mole?1; similary, the deuteron affinity of D2 is 0.35 ± 0.04 kcal mole?1 greater than that of O2. The measurements of entropy changes confirm that O2H+ has a triplet electronic ground state.  相似文献   

9.
Conformational energy maps have been calculated, using the PCILO method, for X3PNP(O)X2 and (X3PNPX3)+ for X = H, F, Cl, CH3 as a function of the PNP angle. In H3PNP(O)H2 the global energy minimum corresponds to the eclipsed conformation of the H3P and P(O)H2 fragments for all PNP angles, while in Cl3PNP(O)Cl2, the global minimum always has Cl3P and P(O)C12 staggered: the global minimum in F3PNP(O)F2 corresponds to eclipsed F3P and P(O)F2 fragments at low PNP angles and staggered fragments at high PNP angles: in (CH3))3PNPO(CH3)2 the global minimum conformation is very sensitive to ∠ PNP. Subordinate energy minima occur for all X3PNP(O)X2, species: in particular, there are two local conformational minima for Cl3PNP(O)Cl2 at the optimum value of ∠ PNP, and the relative energies of the three stable conformations are in good agreement with those derivable from the 31P NMR spectrum of this compound. In (X3PNPX3)+ the global minimum, usually the sole minimum on the conformational energy surface, is always close to the eclipsed conformation: free rotation of the X3P groups relative to one another is approached in each (X3PNPX3)+ ion as ∠PNP approaches 180°. The conformations of the transition states for the equilibria between energy minima are reported with their relative energies, for X3PNP(O)X2 (X = H, F. Cl, CH3) and for (Cl3PNPCl3)+  相似文献   

10.
Dynamics of the reaction B+(3P) + H2 → BH+ + H has been studied in crossed-beam scattering experiments in the collision-energy range 0.6–2.3 eV (c.m.). Scattering diagrams obtained show that in the reaction both the ground state BH+(2Σ+) and the excited state BH+(2 Π) (if energetically accessible) are formed; both states are formed via intermediate complexes whose mean lifetimes are of the order of 10?13 s and decrease with increasing collision energy, as reflected in the decreasing forward-backward symmetry of the scattering diagrams.  相似文献   

11.
Theoretical models are studied which illustrate how the hydration reaction CO2 + H2O → H2CO3 can be catalysed by one or two cationic binding sites (NH4+). In the latter, the arrangement of the two bindings sites is held during the course of the reaction, simulating a rigid molecular receptor. Two different arrangements of the binding sites are studied, and their relative abilities to lower the activation energy of the hydration reaction are studied.  相似文献   

12.
A pulsed monoenergetic 7Li+ ion beam (lab. energy 10–40 eV) is scattered from a highly collimated (= 1.5°) H2 nozzle beam. The time-of-flight spectrum of the ions scattered in the forward laboratory direction shows both a fast peak corresponding to forward center-of-mass scattering and a slow peak corresponding to wide-angle center-of-mass scattering. These peaks have been further resolved to show contributions from individual vibrational quantum transitions. From an analysis of the time-of flight spectra the differential inelastic cross sections for a wide range of angles and energies between 2 eV <Ecm < 9 eV have been determined. The spectra also contain information on rotational inelastic cross sections.  相似文献   

13.
Some geometric configurations of the OH+4 and FH+3 ions have been calculated by the SCF MO LCAO method using linear combinations of gaussian lobe functions. The total electronic energies of the systems under study are lower than the sum of the energies for H2O and H+2 or OH+3 and H, and HF and H+2 or FH+2 and H, respectively.  相似文献   

14.
Ti+(CO2)2Ar and Ti+(CO2)n(n=3-7) complexes are produced by laser vaporization in a pulsed supersonic expansion. The ion complexes of interest are each mass-selected in a time-of-flight spectrometer, and studied with infrared photodissociation spectroscopy. For each complex, a sharp band in the CO stretching frequency region is observed, which confirms the formation of the OTi+CO(CO2)n-1 oxide-carbonyl species. Small OTi+CO(CO2)n-1 complexes (n≦5) exhibit CO stretching and antisymmetric CO2 stretching vibrational bands that are blue-shifted from those of free CO and CO2. The experimental observations indicate that the coordination number of CO and CO2 molecules around TiO+ is five. Evidence is also observed for the presence of another electrostatic bonding Ti+(CO2)2 structural isomer for the Ti+(CO2)2Ar complex, which is characterized to have a bent OCO-Ti+-OCO structure stabilized by argon coordination  相似文献   

15.
16.
17.
The dissociation of a ground state H2 molecule in single collisions with a Li+ ion has been studied using a time of flight technique over a large range of center of mass scattering angles (30° ? υ ? 180°) and collision energies (16 eV < Ecm < 55.5 ev).The results have been transformed into the center of mass system to obtain inelastic differential cross sections (contour maps). In contrast to most other scattering experiments on collision induced dissociation, the results at high energies (Ecm > 40 eV) cannot be explained by a two-step mechanism. Instead dissociation appears to occur in a time comparable to the collision time. The results are consistent with several collision models. Of these the spectator model in which only one of the atoms of the molecule is struck by the incident ion is favored since it is in good agreement with the differential cross sections for backward scattering.  相似文献   

18.
The details and principles of an apparatus built for measurements of fluorescence quantum yields and cascade-free lifetimes of open-shell cations are reported. These rely on the detection of coincidences between energy selected photoelectrons and undispersed photons. The results of such measurements for CO+2, COS+, CS+2 and N2O+ in selected vibrational levels of their excited states are presented. Non-unity fluorescence quantum yields are found for some vibronic levels of CO+2(B), COS+ (A), N2OP+(A) and a non-exponential decay is observed for CS+2(A). The data yield the following values for the radiative lifetimes: CO+2(A) 124 ± 6 ns, CO+2(B) 140 ± 7 ns, COS+(A) 550 ± 50 ns and N2O+(A) 240 ± 12 ns.  相似文献   

19.
Rotational transitions of molecular ions HCO+, CO+, and HN+2 have been observed at frequencies aroud 1 THz. The ions were produced in the negative glow of a hollow cathode discharge cooled by liquid nitrogen. Preliminary results indicate efficient production of ions in an absorption cell of simple construction.  相似文献   

20.
The Raman spectra of solutions of H3 CPH3+ and H3 CPD3+ in aqueous concentrated hydrochloric and deuterochloric acid are reported together with polarisation data. A complete vibrational assignment is given on the basis of C3v, symmetry except for the inactive A2 mode. A set of valence force constants and potential energy distributions have been calculated from the data of the two isotopes H3 CPH3 and H3+ CPD+3. For H3 CPD+3 the potential energy distribution demonstrates strong interaction between the P-C stretching and the symmetrical PD3 deformation mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号