首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Amphiphilic copolymers containing β-cyclodextrin (β-CD) core were synthesized successfully. Synthesis was initiated from tosylated cyclodextrin ((Tosyl)7-β-CD) which is containing two types of functional groups. Hydroxyl functional groups of (Tosyl)7-β-CD were used as initiator for ring opening polymerization of lactide. This step led to star polymers containing tosylated cyclodextrin core and polylactide arms (PLA-(Tosyl)7-β-CD). In the next step, tosyl groups of PLA-(Tosyl)7-β-CD were used as initiator for ring opening polymerization of 2-ethyl-2-oxazoline and amphiphilic copolymers containing cyclodextrin core, PLA and poly(2-ethyl-2-oxazoline) arms (PLA-β-CD-POX) were obtained. Loading of Congo red as guest molecule by amphiphilic copolymers was investigated. The release of guest molecule from chloroform solution of copolymers to water phase was also investigated.  相似文献   

2.
Blockcopolymersasidealcompatibilizershavefoundwideapplicationsinpolymerblends.Forblockcopolymerscontainingpolarblocks,itsadditiontoablendcontainingpolarcomponentsleadstothedecreaseininterfacialtensionbetweentheimmisciblephasesoftheblend,theincreaseinc…  相似文献   

3.
Polymers based on renewable resources are promising candidates for replacing common organic polymers, and thus, for reducing oil consumption. In this contribution we report the microwave-assisted synthesis of block and statistical copolymers from 2-ethyl-2-oxazoline and 2-“soy alkyl”-2-oxazoline via a cationic ring-opening polymerization mechanism. The synthesized copolymers were characterized by gel permeation chromatography and 1H-NMR spectroscopy. The micellization of these amphiphilic copolymers was investigated by dynamic light scattering and atomic force microscopy to examine the effect of hydrophobic block length and monomer distribution on the resulting micellar characteristics.  相似文献   

4.
By mechanism-transformation (anionic→ cationic) poly(styrene- b-2-ethyl -2-oxazoline) diblockcopolymer, PS-b-PEOx, was synthesized in two steps. The first step is the polymerization of styrene blockcapped with ethylene oxide and its tosylation; the second step is the cationic ring-opening polymerization of2-ethyl-2-oxazoline. The products were thoroughly characterized by various methods, such as ~1H-NMR, IR,DMA, TEM and SAXS. The results show that the copolymer obtained possesses high molecular weight andnarrow molecular weight distribution.  相似文献   

5.
A protected aldehyde-functionalized 2-oxazoline, 2-[3-(1,3)-dioxolan-2-ylpropyl]-2-oxazoline (DPOx), was synthesized from commercially available compounds in high yields. The polymerization of DPOx with different initiators proceeds via a living ionic mechanism; thus, the polymers were of low polydispersity and the degree of polymerization could be precisely adjusted. Copolymerization with 2-methyl-2-oxazoline gave water-soluble statistical copolymers. Hydrolysis of the homo- and copolymers resulted in well-defined, aldehyde-bearing poly(2-oxazoline)s. The aldehyde side functions reacted quantitatively with an amino-oxy compound to form the corresponding oxime.  相似文献   

6.
A method for the synthesis of well-defined poly(alkyl vinyl ether–2-ethyl-2-oxazoline) diblock copolymers with hydrolytically stable block linkages has been developed. Monofunctional poly(alkyl vinyl ether) oligomers with nearly Poisson molecular weight distributions were prepared via a living cationic polymerization method using chloroethyl vinyl ether together with HI/ZnI2 as the initiating system and lithium borohydride as the termination reagent. Using the resultant chloroethyl ether functional oligomers in combination with sodium iodide as macroinitiators, 2-ethyl-2-oxazoline was polymerized in chlorobenzene/NMP to afford diblock copolymers. A series of poly(methyl vinyl ether–2-ethyl-2-oxazoline) diblock materials were found to have polydispersities of ≈ 1.3–1.4 and are microphase separated as indicated by two Tg's in their DSC thermograms. These copolymers are presently being used as model materials to study fundamental parameters important for steric stabilization of dispersions in polar media. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
In the first part the ring-opening polymerization of some macrocyclic ether-acetals is briefly described. Of special interest are acetal polymers with functional groups, for instance C=C-double bonds. Appropriate unsaturated monomers and their polymerizability are discussed. The second part deals with the polymerization of oxazolines, substituted in 2- and/or 4-position. Branched polymers are obtained by copolymerization of 2-ethyl-2-oxazoline with 2-hexyl-2-oxazoline or 2-undecyl-2-oxazoline. The properties of the random copolymers and corresponding block copolymers are compared. By a “mixed mechanism technique” a block copolymer composed of a poly(tert -butyl methacrylate) block and a poly(phenyloxazoline) block was prepared. A new initiator system for the polymerization of oxazolines using alkyl chloroformates is introduced. The chloroformate of a trifunctional alcohol led to a three-arm star polymer. Telechelics with two chloroformate endgroups form ABA type block copolymers. Finally four chiral oxazolines are described and the influence of substitution in dioxolanes and oxazolines on the polymerizability is discussed.  相似文献   

8.
The syntheses of two new pyrene-containing monomers—2-(1-pyrenyl)methyl-2-oxazoline ( 6 ) and methyl 2-(1-pyrenyl)acetamidopropenoate ( 12 )—and their polymerization are described. Cationic isomerization polymerization of 6 with ethylene glycol ditosylate initiator gave poly[N-(1-pyrenyl)acetyl ethylenimine] ( 7 ) and free-radical polymerization of 12 with AIBN initiator gave poly[methyl 2-(1-pyrenyl)acetamidopropenoate] ( 15 ). The monomer model compounds of the two polymers, namely, N,N-diethyl(1-pyrenyl)acetamide ( 9 ) and methyl 2-methyl-2-(1-pyrenyl)acetamidopropanoate ( 14 ), were also synthesized. The polymers were characterized by elemental analysis, IR spectroscopy, and a comparison of their 1H-NMR spectra with those of the respective monomer model compounds.  相似文献   

9.
We present the synthesis of novel 2-oxazoline monomers with different 2-substituents and their consecutive conversion into lipopolymers by living cationic polymerization. The side functions of these monomers were varied to realize different steric needs and hydrogen bonding interactions of the polymer side chains. 2-(2'-N-pyrrolidonyl-ethyl)-2-oxazoline, 2-(3'-methoxymonoethyleneglycol)propyl-2-oxazoline, and 2-(3'-methoxytriethyleneglycol)propyl-2-oxazoline were synthesized. All of the monomers could be converted into the corresponding lipopolymers by living cationic polymerization using 2,3-di-O-octadecyl-1-trifluormethansulfonyl-sn-glycerol as the initiator. The characterization of the 2,3-di-O-octadecyl-glycerol-poly(2-oxazoline) lipopolymers by NMR spectroscopy, IR spectroscopy, and gel permeation chromatography revealed that the targeted molar masses and compositions can be controlled by the initial initiator/monomer ([M](0)/[I](0)) ratio for all the synthesized lipopolymers. The polydispersities were found to be narrow (polydispersity indices from 1.06-1.3). The amphiphilic lipopolymers were spread at the air-water interface (Langmuir-Blodgett film balance) and the effect of the polymer side groups and chain lengths upon the Pi-area (A) isotherms of the corresponding lipopolymer monolayers were compared and analyzed. The impact of the polymer side functionalities on a 2D gel formation was examined using an interfacial rheometer operated in an oscillating stress-strain mode. Interestingly enough, none of the newly synthesized lipopolymers showed a rheological transition. This somewhat surprising result not only verified that these 2D gels are not established by hydrogen bonding among hydrophilic polymer moieties, as earlier proposed, but also supported the concept of jammed surface micelles as the more likely origin for the gelation phenomenon. [Diagram: see text]  相似文献   

10.
A simple scheme involving atom transfer radical polymerization (ATRP) from a bifunctional initiator, conversion of the bromine end groups of the resulting telechelic polymer to azides, and cross-linking of this azido-telechelic macromonomer with multi-acetylene functionalized small molecules via copper-catalyzed azide-alkyne cycloaddition was employed to prepare the first tert-butyl acrylate model networks. This general scheme is wide in scope, enabling synthesis of model networks possessing defined pore size from any monomer polymerizable by ATRP. Introduction of an olefin moiety into the ATRP initiator enabled degradation of the materials by ozonolysis to yield star polymer products bearing three or four arms depending on which cross-linker was employed in the parent network. Size-exclusion chromatography of the ozonolysis products confirmed the pore size of the parent network and yielded insight into the number of unreacted functionalities. Model networks derived from a trifunctional alkyne were found to be more completely cross-linked than those derived from a tetrafunctional alkyne, presumably due to less steric hindrance in the former system.  相似文献   

11.
This paper describes a new method of the preparation of block copolymer, in which a mixture of two monomers is subjected to polymerization (simultaneous feeding) by the aid of an initiator. The new method is performed with the polymerization of a family of 2-oxazolines, which proceeds via electrophilic propagating species, cation or covalent bond having electrophilic reactivity. The key to the block copolymer formation with one-shot feeding of monomers is the difference of reactivity of polymerization (nucleophilicity) between the two monomers. First the monomer of higher reactivity is polymerized to completion, and then the monomer of decreased reactivity is polymerized starting from the propagating species of the first polymerization. For the high selectivity of the production of block copolymer, each of two propagations should be of “living mechanism”. Two combinations of monomers, i.e., 2-methyl-2-oxazoline/2-(heptafluoro-n-propyl)-2-oxazoline and 2-phenyl-2-oxazoline/2-(pentafluoroethyl)-2-oxazoline, together with an initiator of methyl tosylate were found to follow the pattern of the new process. Block copolymer of the former monomers' combination was water-soluble, and its aqueous solution showed an excellent value of surface tension.  相似文献   

12.
Novel conjugated ionic polymer was prepared by the polymerization of 2-ethynylpyridine with propargyl tosylate in refluxing methyl alcohol. The polymerization proceeded well in homogeneous manner to give a relatively high yield of polymer. The resulting poly(2-ethynylpyridinium tosylate) having propargyl side chain [poly(EPT-P)] were hygroscopic and soluble in water, methyl alcohol, DMF, and DMSO. The inherent viscosities of the polymers were in the range of 0.08-0.29dL/g. Instrumental analyses using NMR, IR, and UV-visible spectroscopies and elemental analyses indicated that the resulting poly(EPT-P) have a conjugated ionic polymer backbone carrying N-propargyl-2-pyridinium tosylate. Thermal and electro-optical properties of the polymers were also studied.  相似文献   

13.
Poly(N-acetylethylenimine) (polyoxazoline) (POZO) with a terminal triethoxysilyl group was successfully synthesized by the ring-opening polymerization of 2-methyl-2-oxazoline followed by termination with 3-aminopropyltriethoxysilane. Triethoxysilyl-terminated telechelic POZO was prepared by using a bifunctional initiator. These silane coupling POZOs were subjected to acid-catalyzed cohydrolysis polymerization with tetraethoxysilane by the so-called “sol-gel” method to produce a novel organic/inorganic hybrid polymer (block copolymer), which was a homogeneous transparent/glassy composite material. The obtained hybrid showed higher hydrophilic properties compared with silica gel without POZO segments. On the other hand, a hybrid polymer consisting of poly(2-ethyl-2-oxazoline) and silica gel, which absorbed both water and organic solvents, showed amphiphilic properties. POZO segments were eliminated by pyrolysis of the present hybrid polymer to produce a silica with micropores.  相似文献   

14.
We describe a versatile approach to synthesize glycosylated polyphosphazenes with controllable density of glycosyl groups. These glycopolymers have been synthesized by the nucleophilic substitution of poly(dichlorophosphazene) with propargylamine and subsequent “thiol–yne” click reaction between poly[di(propargylamine)phosphazene] and 2,3,4,6‐tetra‐O‐acetyl‐1‐thio‐β‐D ‐glucopyranose (SH‐GlcAc4). The polymers were characterized with FTIR and 1H NMR. We found that the high steric hindrance of SH‐GlcAc4 plays a key role in the overall reaction process, and ~55% of the alkyne groups participate in the “thiol–yne” click reaction. About 8% of the alkyne groups convert to alkene groups at the end of click reaction. The substitution of alkyne/alkane mixture was conducted to reduce the alkyne density in the side groups of polyphosphazenes and minimize the influences of this steric effect. Mixed‐substituent polyphosphazene was synthesized with 2:3 ratio of alkyne and alkane. In this case, almost no alkyne group remains after the “thiol–yne” click reaction, and thus the glycosylated polyphosphazene is able to form into micelles through self‐assembly process. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
Eight-arm star-shaped poly(2-alkyl-2-oxazoline) (M?≈?21,000?g?·?mol?1) was studied by turbidimetry and light scattering in aqueous solutions within concentration ranging from 0.00038 to 0.0276?g?·?cm?3. The arms were the block copolymers of poly(2-isopropyl-2-oxazoline) (PiPrOx) and poly(2-ethyl-2-oxazoline) (PEtOx). Calix[8]arene core was connected with poly(2-isopropyl-2-oxazoline). The behavior of investigated polymer differed from that of thermosensitive stars with poly(2-alkyl-2-oxazoline) homopolymer arms. At low temperatures, the aggregates were formed due to interaction of hydrophobic cores. The phase separation temperatures T1 and T2 of studied star were higher than those for star-shaped poly(2-isopropyl-2-oxazoline) and lower than for poly(2-ethyl-2-oxazoline). T1 and T2 increased with dilution.  相似文献   

16.
选用聚乙烯 丙烯酸 (EAA)为接枝母体 ,首先摸索出 2 乙基 2 唑啉阳离子开环聚合的规律 ,得到高转化率端基为活性离子的聚 ( 2 乙基 2 唑啉 ) (PEOX) ,再与EAA羟基侧基进行接枝反应 ,考察了开环聚合条件及接枝反应条件对接枝率的影响 ,在一定的条件下得到了接枝率 >2 5%的聚乙烯 丙烯酸与聚 ( 2 乙基 2 唑啉 )的接枝共聚物 (EAA g PEOX) .该接枝物用于聚对苯二甲酸丁二醇酯 /聚丙烯 (PBT/PP)共混体系中作相容剂 ,可提高两者的相容性 .  相似文献   

17.
4μ‐A2B2 star‐shaped copolymers contained polystyrene (PS), poly(isoprene) (PI), poly(ethylene oxide) (PEO) or poly(ε‐caprolactone) (PCL) arms were synthesized by a combination of Glaser coupling with living anionic polymerization (LAP) and ring‐opening polymerization (ROP). Firstly, the functionalized PS or PI with an alkyne group and a protected hydroxyl group at the same end were synthesized by LAP and then modified by propargyl bromide. Subsequently, the macro‐initiator PS or PI with two active hydroxyl groups at the junction point were synthesized by Glaser coupling in the presence of pyridine/CuBr/N,N,N ′,N ″,N ″‐penta‐methyl diethylenetri‐amine (PMDETA) system and followed by hydrolysis of protected hydroxyl groups. Finally, the ROP of EO and ε‐CL monomers was carried out using diphenylmethyl potassium (DPMK) and tin(II)‐bis(2‐ethylhexanoate) (Sn(Oct)2) as catalyst for target star‐shaped copolymers, respectively. These copolymers and their intermediates were well characterized by SEC, 1H NMR, MALDI‐TOF mass spectra and FT‐IR in details. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

18.
Poly(2-alkyl-2-oxazoline)s having an acrylate group at both chain ends were synthesized by terminating living bifunctional poly(2-methyl-2-oxazoline) or poly(2-ethyl-2-oxazoline) with acrylic acid. These macromonomers have been polymerized to the corresponding polyoxazoline networks. Thermal as well as UV-initiated free radical polymerization were applied and the influence of the polymerization conditions and molecular weight of the prepolymer used on the properties of the networks were investigated. Both methods of polymerization produced high fractions of soluble material, probably due to the low concentration of the acrylate end groups.  相似文献   

19.
选用聚乙烯-丙烯酸(EAA)为接枝母体,首先摸索出2-乙基-2-恶唑啉阳离子开环聚合的规律,得到高转化率端基为活性翁离子的聚(2-乙基-2-恶唑啉)(PEOX),再与EAA羟基侧基进行接枝反应,考察了开环聚合条件及接枝反应条件对接枝率的影响,在一定的条件下得到了接枝率〉25%的聚乙烯-丙烯酸与聚(2-乙基-2-恶唑啉)的接枝共聚物(EAA-g-PEOX)。该接枝物用于聚对苯二甲酸丁醇酯/聚丙烯(P  相似文献   

20.
The effect of the steric hindrance on the initiating properties of two multifunctional resorcinarene‐based initiators in atom transfer radical polymerization (ATRP) was studied by using Cu(I)‐complexes of three multidentate amine ligands in the polymerization of tert‐butyl acrylate and methyl methacrylate. These ligands are less sterically hindered and have higher activities in the catalysis of ATRP of (meth)acrylates than 2,2′‐bipyridine. The polymerizations were faster and more controlled than with the 2,2′‐bipyridyl catalyst, but the tendency for bimolecular coupling increased. Even though the initiator was octafunctional, the resulting star polymers had only four arms. This indicates that the steric hindrance arising from the conformations of the initiators determines the structure of the polymer, but the ligand noticeably affects the controllability of the polymerization © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3349–3358, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号