首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interfacial tension is an important characteristic of a biological membrane because it determines its rigidity, thus affecting its stability. It is affected by factors such as medium pH and by the presence of certain substances, for example cholesterol, other lipids, fatty acids, amines, amino acids, or proteins, incorporated in the lipid bilayer. Here, the effects of various parameters to on interfacial tension values of bilayer lipid membranes are discussed.  相似文献   

2.
Lipid bilayer membranes form compartments requisite for life. Interfacing supramolecular systems, including receptors, catalysts, signal transducers and ion transporters, enables the function of the membrane to be controlled in artificial and living cellular compartments. In this perspective, we take stock of the current state of the art of this rapidly expanding field, and discuss prospects for the future in both fundamental science and applications in biology and medicine.

This perspective provides an overview of the current state of the art in supramolecular chemistry in lipid bilayer membranes, including receptors, signal transducers, catalysts and transporters, and highlights prospects for the future.  相似文献   

3.
In order to incorporate integral proteins in a functionally active state, metal-supported lipid bilayers must have a hydrophilic region interposed between the bilayer and the metal. This region is realized with a hydrophilic molecule terminating at one end with a sulfhydryl or disulfide group that anchors this "hydrophilic spacer" to the surface of a metal, such as gold or mercury. The other end of the hydrophilic spacer may be covalently linked to the polar head of a phospholipid molecule, giving rise to a supramolecule called "thiolipid" (TL). With respect to gold, mercury has the advantage of providing a defect-free and fluid surface to the self-assembling spacer. Hydrophilic spacers consisting of a polyethyleneoxy or a hexapeptide chain, as well as thiolipids derived from these spacers, were employed to fabricate mercury-supported lipid bilayers. The formation of a lipid bilayer on top of a self-assembled monolayer of a hydrophilic spacer, or of a single-lipid monolayer on top of a self-assembled monolayer of a thiolipid, was realized by simply immersing the coated mercury electrode into an aqueous solution across a lipid film previously spread on its surface at its spreading pressure. Particularly stable mercury-supported lipid bilayers were obtained by using thiolipids. The biomimetic properties of these lipid bilayers were tested by incorporating channel-forming polypeptides (gramicidin and melittin) and proteins (OmpF porin). The effect of the transmembrane potential on the function of these channels was estimated by using a simple electrostatic model of the mercury-solution interphase.  相似文献   

4.
5.
Dissipative particle dynamics simulations are used to study the specific binding structures of polyamidoamine (PAMAM) dendrimers on amphiphilic membranes and the permeation mechanisms. Mutually consistent coarse-grained (CG) models both for PAMAM dendrimers and for dimyristoylphosphatidylcholine (DMPC) lipid molecules are constructed. The PAMAM CG model describes correctly the conformational behavior of the dendrimers, and the DMPC CG model can properly give the surface tension of the amphiphilic membrane. A series of systematic simulations is performed to investigate the binding structures of the dendrimers on membranes with varied length of the hydrophobic tails of amphiphiles. The permeability of dendrimers across membranes is enhanced upon increasing the dendrimer size (generation). The length of the hydrophobic tails of amphiphiles in turn affects the dendrimer conformation, as well as the binding structure of the dendrimer-membrane complexes. The negative curvature of the membrane formed in the dendrimer-membrane complexes is related to dendrimer concentration. Higher dendrimer concentration together with increased dendrimer generation is observed to enhance the permeability of dendrimers across the amphiphilic membranes.  相似文献   

6.
7.
Cellular membranes exhibit a variety of controlled curvatures, with filopodia, microvilli, and mitotic cleavage furrows being only a few of many examples. Coupling between local curvature and chemical composition in membranes could provide a means of mechanically controlling the spatial organization of membrane components. Although this concept has surfaced repeatedly over the years, controlled experimental investigations have proven elusive. Here, we introduce an experimental platform, in which microfabricated surfaces impose specific curvature patterns onto lipid bilayers, that allows quantification of mechanochemical couplings in membranes. We find that, beyond a critical curvature value, membrane geometry governs the spatial ordering of phase-separated domain structures in membranes composed of cholesterol and phospholipids. The curvature-controlled ordering, a consequence of the distinct mechanical properties of the lipid phases, makes possible a determination of the bending rigidity difference between cholesterol-rich and cholesterol-poor lipid domains. These observations point to a strong coupling between mechanical bending and chemical organization that should have wide-reaching consequences for biological membranes. Curvature-mediated patterning may also be useful in controlling complex fluids other than biomembranes.  相似文献   

8.
The successful reconstitution of a tethered BLM on μ-electrodes ranging from 4000 μm to 8 μm is shown in this article. The increase in membrane resistance with decreasing electrode size and the dependency of the membrane capacitance on the electrode size was studied. Furthermore the functional incorporation of α-hemolysin from Staphylococcus aureus into a tBLM situated on μ-electrodes was achieved.  相似文献   

9.
Bullfrog olfactory receptors were reconstituted in bilayer lipid membranes (BLMs). Three odorants were presented to the reconstituted system. The three structurally related odorants were diethylsulfide (DES), thiophene (THP) and diethanolsulfide (DOS). The ordorants were presented in pairs. DOS induced a response in the presence of either of the other two odorants. DES and THP did not induce a response in the presence of either of the other two odorants. These observations suggest that there are two substructures, one common to the three odorants and one that is unique to DOS. The results support the notion that olfactory receptors detect certain molecular segments of odorants.  相似文献   

10.
Rehak M  Hall EA 《The Analyst》2004,129(11):1014-1025
BLM prepared on electrode substrates by supporting or tethering were tested for 'pin-hole' character, comparing data from cyclic voltammetry (CV), surface plasmon resonance (SPR) and rotating disc electrodes (RDE). 1-hexadecylamine tethered BLMs on SAM modified gold electrodes were compared with BLMs assembled on modified polyHEMA or sol-gel layers. BLM formation followed by SPR showed that the initial phase of the assembly was complete in 5-20 minutes and produced layers of thickness >5 nm, compared with the expected final BLM thickness of approximately 3 nm. The CVs of the K(3)[Fe(CN)(6)] couple were significantly suppressed irrespective of the method of BLM assembly, without major differences emerging for the different methods. However, data from the RDE distinguished the 'pin-hole' character of the different preparations. The data were consistent with incomplete initial (<1 h, SPR estimated BLM thickness >5 nm) vesicle fusion leaving 'pin-holes' of approximately 2 microm (HDA-11-mercaptoundecanoic acid (MUA) tethered BLM) to approximately 3 microm (tetraethylorthosilicate sol-gel supported BLM) followed by a slow maturation (>15 h; impedance spectroscopy estimated thickness approximately 3 nm) and lateral spreading and fusion, resulting in loss of 'pin-hole' character (<1 microm). The BLM could be used in conjunction with potentiometric measurement to observe the incorporation of nystatin into the BLM and the rate of incorporation adjusted according to original permeability of the BLM. The 'pin-hole-free' BLM construction with lowest permeability (TEOS supported, 4 x 10(-10) cm s(-1) compared with HDA-MUA, 3 x 10(-9) cm s(-1)) gave a potentiometric signal independent of bulk ion-concentration across 5 decades change in concentration. Formed on an ion-selective electrode, nystatin incorporation could be followed as a change in potential, over >2 h, whereas the TEOS supported BLM with permeability 1 x 10(-9) cm s(-1) shows nystatin incorporation within 1 h. In this instance, addition of ConA reduced the potential to the same value as prior to nystatin incorporation, consistent with nystatin channel closure.  相似文献   

11.
Using the electrostriction method the effect of the glucose and trehalose on the elasticity modulus perpendicular to the membrane plane, E, and the electrical capacitance, C, of supported bilayer lipid membranes (s-BLM) formed on the freshly cut tip of Teflon-coated Ag wire was studied. Addition of saccharides into the electrolyte resulted in a decrease in the elasticity modulus of the s-BLM formed from the soybean phosphatidylcholine in n-hexadecane, while the capacitance was increased. In addition, the trehalose has a considerable stabilizing effect on the above parameters of the s-BLM. Treatment of the s-BLM in an electrolyte containing 0.3 M of the trehalose allowed storage of the s-BLM under dry conditions and under refrigeration, with the subsequent recovery of membrane parameters after the wire had been dipped into the electrolyte.  相似文献   

12.
Using the electrostriction method we have studied the elasticity modulus perpendicular to the membrane plane, E⊥, electrical capacitance, C, coefficient of dynamic viscosity, η, and membrane potential difference δфm of supported bilayer lipid membranes (s-BLM) modified by biotin-streptavidin, as a function of d.c. voltage applied to the membrane. Binding of streptavidin to biotin-modified s-BLM resulted in a slight decrease of membrane capacitance, increase of E and increase of η, while δфm did not change. The val of E of unmodified membranes was found to change considerably with increasing d.c. voltage and the rate of voltage change. Modification of s-BLM by streptavidin leads to reduced changes of E with the rate of d.c. voltage change, and it made s-BLM extremely stable even at an external d.c. voltage of 2 V. Our results indicate that streptavidin considerably stabilized s-BLM by means of the formation of a complex with biotin-modified phospholipids.  相似文献   

13.
We report diffusion coefficients of micron-scale liquid domains in giant unilamellar vesicles of phospholipids and cholesterol. The trajectory of each domain is tracked, and the mean square displacement grows linearly in time, as expected for Brownian motion. We study domain diffusion as a function of composition and temperature and measure how diffusion depends on domain size. We find mechanisms of domain diffusion which are consistent with membrane-dominated drag in viscous L(o) phases and bulk-dominated drag for less viscous L(alpha) phases. Where applicable, we obtain the membrane viscosity and report activation energies of diffusion.  相似文献   

14.
Electronic processes and photosensitization in bilayer lipid membranes   总被引:2,自引:0,他引:2  
Abstract— In part one of this paper, evidence for electronic processes in experimental and biological membranes are reviewed. The membrane under consideration, be it experimental or biological, is understood to mean an ultrathin bamer separating two aqueous phases. The question ‘can electronic processes occur in/across such a structure immersed in an aqueous environment?’ is answered affirmatively. In the second part of this paper, photosensitization by dyes and photoelectric effects in experimental bilayer lipid membranes observed recently are described.  相似文献   

15.
16.
Methods of in-vitro artificial formation of bilayer lipid membranes (BLM) and their analytical applications are reviewed, on the basis of 122 literature references. Different techniques for preparation of free-suspended planar BLMs, and gel-, filter-, and solid-supported systems are presented. The analytical applications developed are based on direct interaction of analytes with chemically unmodified BLMs, and with systems modified by use of redox mediators, ionophores, ion-channel forming species, enzymes, antibodies, or DNA.  相似文献   

17.
The ability of carbon nanotubes to enter the cell membrane acting as drug-delivery vehicles has yielded a plethora of experimental investigations, mostly with inconclusive results because of the wide spectra of carbon nanotube structures. Because of the virtual impossibility of synthesizing CNTs with distinct chirality, we report a parametric study on the use of molecular dynamics to provide better insight into the effect of the carbon nanotube chirality and the aspect ratio on the interaction with a lipid bilayer membrane. The simulation results indicated that a single-walled carbon nanotube utilizes different time-evolving mechanisms to facilitate their internalization within the membrane. These mechanisms comprise both penetration and endocytosis. It was observed that carbon nanotubes with higher aspect ratios penetrate the membrane faster whereas shorter nanotubes undergo significant rotation during the final stages of endocytosis. Furthermore, nanotubes with lower chiral indices developed significant adhesion with the membrane. This adhesion is hypothesized to consume some of the carbon nanotube energy, thus resulting in longer times for the nanotube to translocate through the membrane.  相似文献   

18.
Membrane-bound ion channels are promising biological receptors since they allow for the stochastic detection of analytes at high sensitivity. For stochastic sensing, it is necessary to measure the ion currents associated with single ion channel opening and closing events. However, this calls for stability, high reproducibility, and long lifetimes. A critical issue to overcome is the low stability of the ion channel environment, that is, the bilayer membrane. A promising technique to surmount this is to connect the lower part of the membrane to a surface forming a tethered bilayer membrane. By reconstituting the synthetic ion channel, gramicidin A, into a tethered bilayer as part of a microchip design, we have been able to record the activity of single ion channels. The observed activity was compared with that obtained by a conventional electrophysiology method, tip dipping, to confirm its authenticity. These findings allow for the construction of stable biosensors based on ion channels and provide a novel technique for the characterization of ion channel activity.  相似文献   

19.
The potential use of the bilayer lipid membrane as an electrochemical sensor is discussed through a study of model systems known to cause increased membrane conductance. The limit of detection for amphotericin B, a molecule capable of forming membrane pores, is in the region of 1O-9 M. The current—time profile is discussed in terms of a mechanism which involves micelle formation in the aqueous and lipid phases. Unlike previous experiments, two current maxima with time are observed for valinomycin response (limit of detection 1O-11 M). The first transient signal is attributed to increased membrane permeability caused by a conformational change in valinomycin in the “surface” volume of the bilayer. Selective interactions at membranes and the nature of membrane responses are discussed in terms of analytical parameters.  相似文献   

20.
A one-step method has been developed for incorporating ss DNA into a bilayer lipid membrane (BLM) on agar electrode, which displayed good responses to complementary ss DNA. The 5′-terminal phosphated end of ss DNA formed a phosphormidate bond with the amino group of N,N-diethylamidobenzene (NDAB) in the BLM forming solution. The method is easy to perform and has good reproducibility. Fourier transform infrared spectroscopy (FTIR) showed that the ss DNA was incorporated into the BLM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号