首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The production of biosurfactant by Rhodococcus erythropolis during the growth on glycerol was investigated. The process was carried out at 28°C in a 1.5-L bioreactor using glycerol as carbon source. The bioprocess was monitored through measurements of biosurfactant concentration and glycerol consumption. After 51 h of cultivation, 1.7 g/L of biosurfactant, surface, and interfacial tensions values (with n-hexadecane) of 43 and 15 mN/m, respectively, 67% of Emulsifying Index (E 24), and 94% of oil removal were obtained. The use of glycerol rather than what happens with hydrophobic carbon source allowed the release of the biosurfactant, originally associated to the cell wall.  相似文献   

2.
The production of biosurfactant by Bacillus subtilis ATCC 6633 was investigated using commercial sugar, sugarcane juice and cane molasses, sugarcane juice alcohol stillage, glycerol, mannitol, and soybean oil. Commercial sugar generated the minimum values of surface tension, with the best results (28.7 mN/m, (relative critical micelle concentration [CMC−1] of 78.6) being achieved with 10 g of substrate/L in 48 h. At a pH between 7.0 and 8.0, a higher production of surface-active compounds and a greater emulsifier activity was also observed. Enrichment of the culture medium with trace minerals and EDTA showed maximum yields, whereas supplementation with yeast extract stimulated only cell growth. The kinetic studies revealed that biosurfactant production is a cell growth-associated process; surface tension, CMC, and emulsification index values of 29.6 dyn/cm, 82.3, and 57%, respectively, were achieved, thus indicating that it is feasible to produce biosurfactants from a renewable and low-cost carbon source.  相似文献   

3.
Marine endosymbiotic fungi Aspergillus ustus (MSF3) which produce high yield of biosurfactant was isolated from the marine sponge Fasciospongia cavernosa collected from the peninsular coast of India. Maximum production of biosurfactant was obtained in Sabouraud dextrose broth. The optimized bioprocess conditions for the maximum production was pH 7.0, temperature 20 °C, salt concentration 3%, glucose and yeast extract as carbon source and nitrogen sources respectively. The response surface methodology based analysis of carbon and nitrogen ratio revealed that the carbon source can increase the biosurfactant yield. The biosurfactant produced by MSF3 was partially characterized as glycolipoprotein based on the estimation of macromolecules and TLC analysis. The partially purified biosurfactant showed broad spectrum of antimicrobial activity. The strain MSF3 can be used for the microbially enhanced oil recovery process.  相似文献   

4.
The present study demonstrates the production and properties of a biosurfactant isolated from marine Streptomyces species B3. The production of the biosurfactant was found to be higher in medium containing sucrose and lower in the medium containing glycerol. Yeast extract was the best nitrogen source for the production of the biosurfactant. The isolated biosurfactant reduced the surface tension of water to 29 mN/m. The purified biosurfactant was shown critical micelle concentrations of 110 mg/l. The emulsifying activity and stability of the biosurfactant was investigated at different salinities, pH, and temperature. The biosurfactant was effective at very low concentrations over a wide range of temperature, pH, and salt concentration. The purified biosurfactant was shown strong antimicrobial activity. The biosurfactant was produced from the marine Streptomyces sp. using non-hydrocarbon substrates such as sucrose that was readily available and not required extensive purification procedure. Streptomyces species B3 can be used for microbially enhanced oil recovery process.  相似文献   

5.
The biosurfactant production potential of a new microbial consortium of Enterobacter cloacae and Pseudomonas sp. (ERCPPI-2) which was isolated from heavy crude oil-contaminated soil in the south of Iran, has been investigated under extreme environmental conditions. The isolated consortium produces a biosurfactant mixture with excessive oil spreading and emulsification properties. This consortium was able to grow and produce biosurfactant at temperatures up to 70 °C, pressures up to 6000 psia, salinities up to 15% (w/v), and in the pH range 4-10. Besides, the optimum biosurfactant production conditions were found to be 40 °C and 7.0 for the temperature and pH value, respectively. These conditions gave the best biosurfactant production of 1.74 g/1 when the cells were grown on a minimal salt medium containing 1.0% (w/v) olive oil, 1.0% (w/v) sodium nitrate supplemented with 1.39% (w/v) K(2)HPO(4) at 40 °C and 150 rpm after 48 h of incubation. The ERCPPI-2 could reduce surface and interfacial tensions to 31.7 and 0.65 mN/m from the original values of 58.3 and 16.9 mN/m, respectively. The isolated consortium produced biosurfactant using heavy crude oil as the sole source of carbon and emulsified the available heavy crude oil up to E(24)=83.4%. The results of the core holder flooding tests at simulated reservoir conditions demonstrated that the oil recovery efficiency due to the injection of the cell-free biosurfactant solution was 27.2%, and the bacterium injection reduced the final residual oil saturations to below 3% at optimum conditions.  相似文献   

6.
Microbial-derived surfactants are molecules of great interest due to their environmentally friendly nature and low toxicity; however, their production cost is not competitive when compared to synthetics. Marine microorganisms are exposed to extremes of pressure, temperature, and salinity; hence, they can produce stable compounds under such conditions that are useful for industrial applications. A screening program to select marine bacteria able to produce biosurfactant using low-cost substrates (mineral oil, sucrose, soybean oil, and glycerol) was conducted. The selected bacterial strain showed potential to synthesize biosurfactants using mineral oil as carbon source and was identified as Brevibacterium luteolum. The surface-active compound reduced the surface tension of water to 27 mN m?1 and the interfacial tension (water/hexadecane) to 0.84 mN m?1 and showed a critical micelle concentration of 40 mg L?1. The biosurfactant was stable over a range of temperature, pH, and salt concentration and the emulsification index (E24) with different hydrocarbons ranging from 60 to 79 %. Structural characterization revealed that the biosurfactant has a lipopeptide nature. Sand washing removed 83 % of crude oil demonstrating the potential of the biosurfactants (BS) for bioremediation purposes. The new marine B. luteolum strain showed potential to produce high surface-active and stable molecule using a low-cost substrate.  相似文献   

7.
An indigenous biosurfactant producing bacterium, Rhodococcus sp. strain TA6 was isolated from Iranian oil contaminated soil using an efficient enrichment and screening method. During growth on sucrose and several hydrocarbon substrates as sole carbon source, the bacterium could produce biosurfactants. As a result of biosurfactant synthesis, the surface tension of the growth medium was reduced from 68mNm(-1) to values below 30mNm(-1). The biosurfactant was capable of forming stable emulsions with various hydrocarbons ranging from pentane to light motor oil. Preliminary chemical characterization revealed that the TA6 biosurfactant consisted of extracellular lipids and glycolipids. The biosurfactant was stable during exposure to high salinity (10% NaCl), elevated temperatures (120°C for 15min) and within a wide pH range (4.0-10.0). The culture broth was effective in recovering up to 70% of the residual oil from oil-saturated sand packs which indicates the potential value of the biosurfactant in enhanced oil recovery.  相似文献   

8.
Pseudomonas aeruginosa strain OBP1, isolated from petroleum sludge, was used to produce biosurfactant from a modified mineral salt medium with 2% n-hexadecane as sole source of carbon. The crude biosurfactant was fractionated using TLC and HPLC. Using FTIR spectroscopy, 1H NMR, and LC-MS analyses, the chemical structure of the purified fraction of crude biosurfactant was identified as rhamnolipid species. The LC-MS spectra show that monorhamnolipid (l-rhamnopyranosyl-β-hydroxydecanoyl-β- hydroxydecanoate, Rha-C10-C10) was produced in abundance with the predominant congener [M–H] ions for l-rhamnopyranosyl-l-rhamnopyranosyl-3-hydroxydecanoyl-3-hydroxydecanoate (Rha-Rha-C10-C10). Seven different carbon substrates and five nitrogen sources were examined for their effect on rhamnolipid production. Using n-hexadecane (20 g/l) as carbon substrate and urea along with (NH4)2SO4 (2 g/l each) as nitrogen source was found to be the best, with a maximum yield of 4.8 g/l. The biosurfactant reduced the surface tension of water to 31.1 mNm−1 with a critical micelle concentration of 45 mg/l. The biosurfactant showed a better emulsifying activity against a variety of hydrocarbon and achieved a maximum emulsion index of 82% for diesel. The purified biosurfactant showed a significant antibacterial activity against Staphylococcus aureus at a minimum inhibitory concentration of 8 μg/ml.  相似文献   

9.
In this study, biosurfactant-producing bacteria was evaluated for biosurfactant production by using banana peel as a sole carbon source. From the 71 strains screened, Halobacteriaceae archaeon AS65 produced the highest biosurfactant activity. The highest biosurfactant production (5.30 g/l) was obtained when the cells were grown on a minimal salt medium containing 35 % (w/v) banana peel and 1 g/l commercial monosodium glutamate at 30 °C and 200 rpm after 54 h of cultivation. The biosurfactant obtained by extraction with ethyl acetate showed high surface tension reduction (25.5 mN/m), a small critical micelle concentration value (10 mg/l), thermal and pH stability with respect to surface tension reduction and emulsification activity, and a high level of salt tolerance. The biosurfactant obtained was confirmed as a lipopeptide by using a biochemical test FT-IR, NMR, and mass spectrometry. The crude biosurfactant showed a broad spectrum of antimicrobial activity and had the ability to emulsify oil, enhance PAHs solubility, and oil bioremediation.  相似文献   

10.
The Pseudomonas aeruginosa PA1 strain, isolated from the water of oil production in Sergipe, Northeast Brazil, wasevaluated as a potential rhamnolipid type of biosurfactant producer. The production of biosurfactants was investigated using different carbon sources (n-hexadecane, paraffin oil, glycerol, and babassu oil) and inoculum concentrations (0.0016–0.008 g/L) The best results were obtained with glycerol as the substrate and an initial cell concentration of 0.004 g/L. AC:N ratio of 22.8 led to the greatest production of rhamnolipids (1700 mg/L) and efficiency (1.18 g of rhamnolipid/g of dry wt).  相似文献   

11.
A biosurfactant-producing thermophile was isolated from the Kahrizak landfill of Tehran and identified as a bacterium belonging to the genus Aneurinibacillus. A thermostable lipopeptide-type biosurfactant was purified from the culture medium of this bacterium and showed stability in the temperature range of 20–90 °C and pH range of 5–10. The produced biosurfactant could reduce the surface tension of water from 72 to 43 mN/m with a CMC of 1.21 mg/mL. The strain growing at a temperature of 45 °C produces a substantial amount of 5 g/L of biosurfactant in the medium supplemented with sunflower oil as the sole carbon source. Response surface methodology was employed to optimize the biosurfactant production using sunflower oil, sodium nitrate, and yeast extract as variables. The optimization resulted in 6.75 g/L biosurfactant production, i.e., 35 % improved as compared to the unoptimized condition. Thin-layer chromatography, FTIR spectroscopy, 1H-NMR spectroscopy, and biochemical composition analysis confirmed the lipopeptide structure of the biosurfactant.  相似文献   

12.
The strain SmSA, identified as Serratia marcescens and known as a biosurfactant producer, was isolated from hydrocarbon contaminated soil from Veracruz, México. The interactions among the C/N, C/Mg and C/Fe ratios have not been examined for this microorganism. In this work was evaluated the effect of these nutrients at three levels using a mineral medium with glucose as the carbon source. A Box-Behnken experimental design was utilised to maximise biosurfactant production, which was assessed by oil spreading and surface tension tests. The treatment with C/N=5, C/Fe=26,000 and C/Mg=30 showed the best result since the surface tension was reduced to 30 mN m(-1). The multiple regression and response surface analyses indicated that the interaction between C/N and C/Mg had the utmost effect on the reduction of surface tension and biosurfactant production. The conditions of the best treatment were used to scale up biosurfactant production in a 3L bioreactor giving a yield of 4.1 gL(-1) of pure biosurfactant. It was found that the biosurfactant was mainly produced in the exponential phase and decreased the surface tension to 31 mN m(-1). The contact between the biosurfactant with heavy oil (15° API) increased its displacement from 9.3 to 18 cm.  相似文献   

13.

Interests in biosurfactant in industrial and environmental applications have increased considerably in recent years, owing to their potential benefits over synthetic counterparts. The present study aimed at analyzing the stability and oil removal efficiency of a new lipopeptide biosurfactant produced by Paenibacillus sp. D9 and its feasibility of its use in biotechnological applications. Paenibacillus sp. D9 was evaluated for optimal growth conditions and improved production yield of lipopeptide biosurfactant with variations in different substrate parameters such as carbon (C), nitrogen (N), C:N: ratio, metal supplements, pH, and temperature. Enhanced biosurfactant production was observed when using diesel fuel and ammonium sulfate as carbon and nitrogen source respectively. The maximum biosurfactant yield of 4.11 g/L by Paenibacillus sp. D9 occurred at a C/N ratio of 3:1, at pH 7.0, 30 °C, 4.0 mM MgSO4, and 1.5% inoculum size. The D9 biosurfactant was found to retain surface-active properties under the extreme conditions such as high thermal, acidic, alkaline, and salt concentration. The ability to emulsify further emphasizes its potential usage in biotechnological application. Additionally, the lipopeptide biosurfactant exhibited good performance in the degradation of highly toxic substances when compared with chemical surfactant, which proposes its probable application in biodegradation, microbial-enhanced oil recovery or bioremediation. Furthermore, the biosurfactants were effective in a test to stimulate the solubilization of hydrophobic pollutants in both liquid environments removing 49.1 to 65.1% diesel fuel including hydrophobic pollutants. The study highlights the usefulness of optimization of culture parameters and their effects on biosurfactant production, high stability, improved desorption, and solubilization of hydrophobic pollutants.

  相似文献   

14.
Bacillus subtilis BS5 is a soil isolate that produces promising yield of surfactin biosurfactant in mineral salts medium (MSM). It was found that cellular growth and surfactin production in MSM were greatly affected by the environmental fermentation conditions and the medium components (carbon and nitrogen sources and minerals). Optimum environmental conditions for high surfactin production on the shake flask level were found to be a slightly acidic initial pH (6.5-6.8), an incubation temperature of 30 degrees C, a 90% volumetric aeration percentage, and an inoculum size of 2% v/v. For media components, it was found that the optimum carbon source was molasses (160 ml/l), whereas the optimum nitrogen source was NaNO(3) (5 g/l) and the optimum trace elements were ZnSO(4).7H(2)O (0.16 g/l), FeCl(3).6H(2)O (0.27 g/l), and MnSO(4).H(2)O (0.017 g/l). A modified MSM (molasses MSM), combining the optimum medium components, was formulated and resulted in threefold increase in surfactin productivity that reached 1.12 g/l. No plasmid could be detected in the tested isolate, revealing that biosurfactant production by B. subtilis isolate BS5 is chromosomally mediated but not plasmid-mediated.  相似文献   

15.
The indigenous microbial community utilizing aliphatic, aromatic, and polar components from the oily sludge as sole source of carbon and energy was selected from the soil samples of Ankleshwar, India for biosurfactant production. Evaluation of biosurfactant production was done using screening assays such as surface tension reduction, hemolytic activity, emulsification activity, drop-collapse assay, and cell surface hydrophobicity studies. Maximum biosurfactant (6.9?g/l) production was achieved after 5?days of growth from Bacillus subtilis DSVP23 which was identified by 16S RNA technique (NCBI GenBank accession no. EU679368). Composition of biosurfactant showed it to be lipopeptide in nature with 15.2% protein content and 18.0% lipid content. Functional group analysis was also done by using Fourier transform infrared spectroscopy which showed it to be a protein-bound lipid thereby imparting them special properties. Analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometric and nuclear magnetic resonance revealed that the major constituents of lipopeptide are leucine and isoleucine. Gas chromatographic analysis data indicated that oily sludge components of chain length C12?CC30 and aromatic hydrocarbons were degraded effectively by B. subtilis DSVP23 after 5?days of incubation. These results collectively points toward the importance of B. subtilis DSVP23 as a potential candidate for bioremediation studies.  相似文献   

16.
Paenibacillus macerans TKU029 can produce exopolysaccharides (EPSs; 3.46 g/L) and a biosurfactant (1.78 g/L) in a medium with 2 % (w/v) squid pen powder as the sole carbon/nitrogen source. The biosurfactant can reduce the surface tension of water from 72.30 to 35.34 mN/m at a concentration of 2.76 g/L and reach an emulsification index of 56 % after a 24-h reaction with machine oil. This biosurfactant is stable at 121 °C for 20 min, over a pH range from 3 to 11, and in <5 % salt solutions. It also shows significant antimicrobial activity, which remains active after treatment at 121 °C and at pH values from 4 to 10, against Escherichia coli BCRC13086, Staphylococcus aureus BCRC10780, Fusarium oxysporum BCRC32121 and Aspergillus fumigatus BCRC30099. Furthermore, human skin shows from 37.3 to 44.3 % hydration after being treated with TKU029 EPSs for 180 min. These results imply that EPSs and the biosurfactant from this strain have potential in cosmetics, for removal of oil contamination, and as antimicrobial agents.  相似文献   

17.
Bacillus subtilis LAMI008 strain isolated from the tank of Chlorination at the Wastewater Treatment Plant on Campus do Pici in Federal University of Ceará, Brazil has been screened for surfactin production in mineral medium containing clarified cashew apple juice (MM-CAJC). Results were compared with the ones obtained using mineral medium with glucose PA as carbon source. The influence on growth and surfactin production of culture medium supplementation with yeast extract was also studied. The substrate concentration analysis indicated that B. subtilis LAMI008 was able to degrade all carbon sources studied and produce biosurfactant. The highest reduction in surface tension was achieved with the fermentation of MM-CAJC, supplemented with yeast extract, which decreased from 58.95?±?0.10 to 38.10?±?0.81 dyn cm?1. The biosurfactant produced was capable of emulsifying kerosene, achieving an emulsification index of 65%. Surfactin concentration of 3.5 mg L?1 was obtained when MM-CAJC, supplemented with yeast extract, was used, thus indicating that it is feasible to produce surfactin from clarified cashew apple juice, a renewable and low-cost carbon source.  相似文献   

18.
The utility of rhamnolipids in industry is currently limited due to the high constraints in its economic production. In this scenario, the novel utility of sodium dodecyl sulphate (SDS) as carbon source could serve as promising cost-effective strategy. Screening of effective SDS biodegraders led to the isolation of Pseudomonas aeruginosa S15 capable of concomitant SDS degradation and biosurfactant synthesis. SDS-based rhamnolipid production was proved on SDS minimal agar plates using cetyl trimethylammonium bromide–methylene blue method and optimised in SDS-based minimal salt (SBS) medium. SDS proved to be an ideal carbon source for rhamnolipid synthesis with a high substrate to product conversion rate yielding 6.9 g/l of rhamnolipids from 1 g/l SDS in 5 days. Fast atom bombardment mass spectroscopy analysis of the purified biosurfactant proved the presence of mono- and di-rhamnolipids, viz., Rha-C10-C10, Rha-C10-C12 and Rha-Rha-C10-C10 with surface active properties. The secreted rhamnolipids were not utilised by S15 as a carbon source, but it caused a dispersion of bacterial biofilms in SBS medium. To the best of our knowledge, this is the first report on bioconversion of synthetic detergent to biodetergent. This SDS-based novel methodology presents a more economised mode of rhamnolipid synthesis utilising SDS as sole carbon source.  相似文献   

19.
In this study, two strains, Acinetobacter sp. XM-02 and Pseudomonas sp. XM-01, were isolated from soil samples polluted by crude oil at Bohai offshore. The former one could degrade alkane hydrocarbons (crude oil and diesel, 1:4 (v/v)) and crude oil efficiently; the latter one failed to grow on alkane hydrocarbons but could produce rhamnolipid (a biosurfactant) with glycerol as sole carbon source. Compared with pure culture, mixed culture of the two strains showed higher capability in degrading alkane hydrocarbons and crude oil of which degradation rate were increased from 89.35 and 74.32?±?4.09 to 97.41 and 87.29?±?2.41 %, respectively. In the mixed culture, Acinetobacter sp. XM-02 grew fast with sufficient carbon source and produced intermediates which were subsequently utilized for the growth of Pseudomonas sp. XM-01 and then, rhamnolipid was produced by Pseudomonas sp. XM-01. Till the end of the process, Acinetobacter sp. XM-02 was inhibited by the rapid growth of Pseudomonas sp. XM-01. In addition, alkane hydrocarbon degradation rate of the mixed culture increased by 8.06 to 97.41 % compared with 87.29 % of the pure culture. The surface tension of medium dropping from 73.2?×?10?3 to 28.6?×?10?3 N/m. Based on newly found cooperation between the degrader and the coworking strain, rational investigations and optimal strategies to alkane hydrocarbons biodegradation were utilized for enhancing crude oil biodegradation.  相似文献   

20.
Pseudomonas aeruginosa PACL strain, isolated from oil-contaminated soil taken from a lagoon, was used to investigate the efficiency and magnitude of biosurfactant production, using different waste frying soybean oils, by submerged fermentation in stirred tank reactors of 6 and 10 l capacities. A complete factorial experimental design was used, with the goal of optimizing the aeration rate (0.5, 1.0, and 1.5 vvm) and agitation speed (300, 550, and 800 rpm). Aeration was identified as the primary variable affecting the process, with a maximum rhamnose concentration occurring at an aeration rate of 0.5 vvm. At optimum levels, a maximum rhamnose concentration of 3.3 g/l, an emulsification index of 100%, and a minimum surface tension of 26.0 dynes/cm were achieved. Under these conditions, the biosurfactant production derived from using a mixture of waste frying soybean oil (WFSO) as a carbon source was compared to production when non-used soybean oil (NUSO), or waste soybean oils used to fry specific foods, were used. NUSO produced the highest level of rhamnolipids, although the waste soybean oils also resulted in biosurfactant production of 75–90% of the maximum value. Under ideal conditions, the kinetic behavior and the modeling of the rhamnose production, nutrient consumption, and cellular growth were established. The resulting model predicted data points that corresponded well to the empirical information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号