首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The availability of scrap poly(ethylene terephthalate) (PET) from post-consumer bottles is increasing as the post-consumer collecting systems are becoming more usual in daily life. PET is well known as a high-performance engineering thermoplastic because of its good thermal stability, chemical resistance, and excellent mechanical properties. Many efforts have been carried out to use this material in housings of electronic applications. However, the flammability of PET is a shortcoming in some of these applications. In this study, our attempt is to incorporate a non-halogenated flame retardant, in form of a phosphorus-containing compound, together with a commercial glass fibre grade to achieve UL94 test V-0 rating for PET. An investigation of thermal stability and flammability (HDT, UL94 V-test) and mechanical (tensile, flexural and impact tests) properties of glass fibre filled PET samples is reported as a function of fraction of flame retardant. This work shows the influence of the filler content and the interfacial filler/matrix adhesion on the flame retardant and the mechanical properties.  相似文献   

2.
聚对苯二甲酸丙二醇酯作为新型聚酯材料,具有非常优良的性能,但其易燃性很大的限制了它的应用范围。为了提高对苯二甲酸乙二醇酯的阻燃性能,本文以无卤膨胀型EPFR-300A为阻燃改性剂,马来酸酐接枝聚烯烃(POE-g-MAH)弹性体为增韧剂,对聚对苯二甲酸丙二醇酯树脂(PTT)进行阻燃改性。通过热重分析仪(TGA)、示差扫描量热仪(DSC)、扫描电子显微镜(SEM)、力学性能等技术手段研究了阻燃剂和增韧剂对PTT树脂力学、热学和阻燃性能的影响。结果表明,增韧剂POE和POE-g-MAH的添加提高了PTT树脂的综合力学性能。当质量分数相同时,POE-g-MAH对PTT树脂的增韧效果要优于POE,且当POE-g-MAH质量分数为7%时,综合力学性能最佳。当添加相同质量分数增韧剂,EPFR-300A质量分数达到20%时,阻燃PTT材料阻燃性能最佳,极限氧指数(LOI)达到28.0%,垂直燃烧阻燃等级达到UL94 V-0级。EPFR-300A阻燃剂与PTT树脂间相容性良好,可以有效地促进PTT树脂成炭并提高材料的阻燃性能。  相似文献   

3.
Polystyrene based nanocomposites (PNCs) with and without flame retardant additives were successfully prepared through a single-screw extrusion technique. The combination effect of nanoparticles and flame retardants was investigated with nanosilica and attapulgite clay as nanofillers, and with a NASA formulated SINK flame retardant. A comprehensive study was done by Cone Calorimetry, UL94 and TGA.The addition of nanoparticles to polystyrene generally improved the OI of polystyrene. The horizontal burning tests suggested that nanofiller types have different impacts on the flammability of nanocomposites. According to the vertical burning tests and oxygen indices, it was found that polystyrene/silica and polystyrene/attapulgite clay PNCs alone are not flame retardant. In fact, the materials burned faster. However, the combination of nanocomposites with the SINK flame retardant significantly altered the thermal stability, and flammability of the materials. A remarkable reduction in heat release rates of polystyrene was achieved for both silica and attapulgite with flame retardant nanocomposites. For instance, the introduction of 20% SINK into PS reduced the PHRR of PS from 1212 to 838 (−31%); 10% silica reduced it from 1212 to 1060 (−13%), while the combination of silica and SINK reduced it to 530 (−56%), which clearly shows interaction between nanosilica and SINK.  相似文献   

4.
Flame retardant mixtures of carbon nanotubes (CNTs) and intumescent flame retardant (IFR) were embedded in polypropylene (PP) to investigate what will happen if the additives exhibit two different flame retardation mechanisms. TEM tests showed that CNTs dispersed homogenously in PP matrix without any visible agglomeration. The effects of CNTs on thermal stability and flammability of PP were investigated by thermogravimetry (TG) and cone calorimetry tests, respectively. Results indicated that the introduction of CNTs only enhanced thermal stability of materials in a certain temperature range, but caused a severe deterioration of flame retardancy due to the interaction of the network structure and the intumescent carbonaceous char. Furthermore, conditions for an intumescent flame retardation system to behave with high efficiency were also discussed by a secondary combustion test.  相似文献   

5.
The phosphorus-containing additives can help for forming a stable solid electrolyte interface film on the NCA cathode, thus enhance the thermal stability of the electrolyte and cycle performance of the battery.  相似文献   

6.
For the first time, thermal stability and flame retardant properties of cotton fabrics modified with poly (propylene imine) dendrimer (PPI-dendrimer) using cross linking agents have been reported. The PPI-dendrimers can be considered as novel nitrogen flame retardant agents, because they contain a large number of nitrogen-containing groups (amine end groups), which may release nitrogen gas or ammonia. In this paper, the effect of the PPI-dendrimers on thermal behavior of cotton fabric is investigated through thermogravimetric analysis, differential scanning calorimetry, flammability (in vertical configuration) and limiting oxygen index tests. Indeed, both thermal stability and flame retarancy of the modified fabrics have significantly enhanced. Furthermore, field emission scanning electron microscopy micrographs have been studied in order to evaluate morphology of the cotton samples. Crystallinity and physical properties including crease recovery angle, breaking strength, whiteness index and hygroscopicity of the samples have been also assessed.  相似文献   

7.
The surface chemical modified aluminum hypophosphite (AHP) defined as MAHP was successful prepared through P–H bonds on AHP surface reacted with the aldehyde groups in hexa‐(4‐aldehyde‐phenoxy)‐cyclotriphosphazene made in our lab. The wettability of the flame retardants was evaluated by water contact angle tests, and the water contact angle of the prepared MAHP dramatically increased from 0° for AHP to 145°, which indicated the surface modification made the superhydrophilic AHP into superior hydrophobic MAHP. The prepared MAHP and AHP, respectively, incorporated into polyamide 6 (PA6) matrix to prepare flame retardant PA6 composites and the fire retardancy and thermal degradation behavior of flame retardant PA6 composites were investigated by limiting oxygen index, vertical burning test (UL‐94), cone calorimeter, and thermogravimetric analysis tests. The morphologies and chemical compositions of the char residues for PA6 composites were investigated by scanning electron microscopy and X‐ray photoelectron spectroscopy, respectively. The water resistant properties of flame retardant PA6 composites were evaluated by putting the samples into distilled water at 70°C for 168 hr, and the mechanical properties for flame retardant PA6 composites were investigated by the tensile, flexural, and Izod impact strength tests. The results demonstrated that the PA6/MAHP composites successfully passed UL‐94 V‐0 flammability rating, and the limiting oxygen index value was 27.6% when the loading amount of MAHP was 21 wt%. However, there is no rating in vertical burning tests for PA6/AHP composite with the same amount of AHP, which indicated the surface modification of AHP enhanced the flame retardancy efficiency for PA6 composites. The morphological structures and analysis of X‐ray photoelectron spectroscopy of char residues revealed that the surface modification of AHP benefited to the formation of a sufficient, flame retardant elements rich, more compact and homogeneous char layer on the materials surface during combustion, which prevented the heat transmission and diffusion, limit the production of combustible gases, inhibit the emission of smoke and then led to the reduction of the heat release rate and smoke produce rate. The mechanical properties results revealed that the surface modification of AHP enhanced the mechanical properties, especially the Izod impact strength comparing with that of PA6/AHP composites with the same amount of flame retardant. After water resistance tests, the PA6/MAHP composites remained superior flame retardancy and presented continuous and compact char layer after cone calorimeter tests; however, the fire retardancy for PA6/AHP composite obviously decreased, and the char layer was discontinuous with big hole caused by the extraction of AHP by water during water resistance tests. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
In order to prepare halogen-free flame-retardant glass-fiber-reinforced poly(ethylene terephthalate) (FR-GF-PET), a novel flame retardant containing three flame-retardant elements, P, N and S, was synthesized by melt condensation reaction. Its chemical structure was characterized by FT-IR and 1H NMR spectra. FR-GF-PET was prepared by melt-mixing the flame retardant with GF-PET. The effects of the flame retardant on the flammability and thermally decomposing behaviors of GF-PET were studied via LOI, UL-94 and TGA tests. The results showed that despite a negative effect on the thermal stability of GF-PET, the incorporation of the flame retardant improved the flame retardancy of GF-PET largely. The LOI values of GF-PET increase linearly with the increase of flame retardant content. The GF-PET passed the V-0 rating in UL-94 tests when 15 wt% of the flame retardant was added to GF-PET. An interesting phenomenon was found, that is, with the increase of flame retardant content, the flame retardancy of the system increased but the char yield decreased, which was explained according to the evidences of XPS tests and the kinetics of thermally decomposing reaction.  相似文献   

9.
Various formulations of low-density polyethylene blended with ethylene vinyl acetate were prepared to improve the flame retardancy for wire and cable applications. The prepared formulations were cross-linked by γ-rays to 50, 100, 150 and 200 kGy in the presence of trimethylolpropane triacrylate (TMPTA). The effect of thermal aging on mechanical properties of these formulations were investigated. In addition, the influence of various combinations of aluminum trihydroxide and zinc borate as flame retardant fillers on the flammability was explored. Limiting oxygen index (LOI) and average extent of burning were used to characterize the flammability of investigated formulations. An improved flame retardancy of low density polyethylene was achieved by various combinations of flame ratardant fillers and cross-linking by gamma radiation.  相似文献   

10.
A novel hyperbranched polyamine charring agent (HPCA), a derivative of triazines, was synthesized and well characterized by 1H NMR and FTIR. HPCA and ammonium polyphosphate (APP) were added into polylactide (PLA) resin as an intumescent flame retardant (IFR) system to impart flame retardancy and dripping resistance to PLA. The flammability and thermal stability of IFR-PLA composites were investigated by limiting oxygen index (LOI), UL-94 vertical burning, cone calorimetry and thermogravometric analysis (TGA) tests. The results showed that the IFR system had both excellent flame retardant and anti-dripping abilities for PLA. The TGA curves suggested that HPCA has good ability of char formation and when combined with APP, would induce synergistic effect which could be clearly observed. This effect greatly promoted the char formation of IFR-PLA composites, hence improved the flame retardant property. Additionally, the structure and morphology of char residues were studied by XPS, FTIR and SEM.  相似文献   

11.
In this work, the flame‐retardant high‐density polyethylene/ethylene vinyl‐acetate copolymer (HDPE/EVA) composites have been prepared by using expandable graphite (EG) as a flame retardant combined with ammonium polyphosphate (APP) and red phosphorus masterbatch (RPM) as synergists. The synergistic effects of these additives on the flammability behaviors of the filled composites have been investigated by limiting oxygen index, UL‐94 test, cone calorimeter test, thermogravimetric analysis (TGA), Fourier‐transform infrared (FTIR), and scanning electron microscopy. The results show that APP and RPM are good synergists for improving the flame retardancy of EG‐filled HDPE/EVA composites. The data from TGA and FTIR spectra also indicate the synergistic effects of APP and RPM with EG considerably enhance the thermal degradation temperatures but decrease the charred residues of the HDPE/EVA/EG composites because the flame‐retardant mechanism has changed. The morphological observations present positive evidences that the synergistic effects take place in APP and RPM with EG in flame‐retardant EG‐filled HDPE/EVA/EG composites. The formation of stable and compact charred residues promoted by APP and RPM with EG acts as effective heat barriers and thermal insulations, which improves the flame‐retardant performances and prevents the underlying polymer materials from burning. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
A novel natural carbon agent-based flame retardant urea salt of chitosan phosphate (UPCS) has been prepared with chitosan, phosphorus pentoxide, and urea. It was characterized by 13C NMR, 31P NMR, Fourier transform infrared spectra (FTIR), and X-ray photoelectron spectroscopy. Its influence on thermal properties and flammability performance of polyvinyl alcohol was investigated through thermogravimetric analysis, microscale combustion calorimetry experiment, and real time FTIR. The surface morphology of the residual char was investigated with the scanning electron microscope measurement. The results revealed that UPCS accelerated the dehydration action as well as the formation of char. Furthermore, flammability performance of polyvinyl alcohol was improved by the presence of UPCS.  相似文献   

13.
In this article, the composites based on long glass fibre reinforced polypropylene/intumescent flame retardant (LGFPP/IFR) were prepared by melt blending. The influence of thermal oxidative ageing on the LGFPP/IFR composites with different thermal oxidative ageing time at 140 °C was studied by means of oven heating. The thermal stability and flammability of the composites were respectively investigated by thermal gravimetric analysis (TG), limiting oxygen index (LOI), UL-94 test, cone calorimeter test (CCT), scanning electronic microscopy (SEM), mechanical properties test and energy-dispersive X-ray analysis (EDAX). A trend of increase first and then decrease in LOI values was shown in 0–50 days ageing, with the same trend as thermal stability obtained from TG in nitrogen condition. The CCT results indicated that the LGFPP/IFR composites after ageing achieved a higher heat release rate, which means a higher fire risk. The mechanical properties showed a global decrease in just 10 days ageing. Morphologies obtained from SEM showed that both the rupture of PP matrix and fibre interface debonding led to the decrease in mechanical properties. The EDAX proved that IFR particles could emerge and gather on the surface of sample in ageing procedure, which had great effects on the thermal stability and flame retardancy of the composites.  相似文献   

14.
Flame-retardant microspheres are important due to their ability to increase the thermal stability of host materials. Bromine-containing compounds have been used for centuries due to their flame-retardant properties. A problem with many currently used fire retardants is their escape from their host material, decreasing their effectiveness as well as polluting the environment. In this work, a pentabromostyrene (PBS) monomer was synthesized and polymerized by dispersion polymerization for preparation of flame-retardant microspheres. The effect of various polymerization parameters on their size and size distribution was also elucidated. In order to demonstrate the potential of poly(PBS) microspheres as flame retardants, poly(PBS)/polystyrene (poly(PBS)/PS) blends were prepared, and it was shown that the higher the percentage of poly(PBS) in the blend, the higher the combustion temperature. An additional test for the performance of the poly(PBS) microparticles as flame-retardant additives was performed by coating polyethylene terephthalate (PET) films with the poly(PBS) microspheres, decreasing their flammability, as was illustrated by a vertical burn test. The high thermal stability and low flammability of both the poly(PBS) particles and the poly(PBS)/polymer blends indicate the potential of these microspheres as flame-retardant additives.  相似文献   

15.
The economic and environmentally friendly flame‐retardant compound, tetramethyl (6‐chloro‐1,3,5‐triazine‐2,4‐diyl)bis(oxy)bis(methylene) diphosphonate ( CN‐1 ), was synthesized by a simple two‐step procedure from dimethyl phosphate, and its chemical structure was characterized by 1H, 13C, and 31P nuclear magnetic resonance and gas chromatography mass spectroscopy. Using the traditional pad–dry–cure method, we obtained several different add‐ons (wt%) by treating cotton twill fabric with flame retardant ( CN‐1 ). Thermogravimetric analysis, in an air and nitrogen atmosphere, of the modified cotton showed that decomposition occurred ~230°C with 16% residue weight char yield at 600°C, indicating high thermal stability for all treated levels. Limiting oxygen index (LOI) and the vertical flammability test were employed to determine the effectiveness of the flame‐retardant treatments on the fabrics. LOI values increased from ~18 vol% oxygen in nitrogen for untreated fabric to maximum of 34 vol% for the highest treatment level. Fabrics with higher levels of flame retardant also easily passed the vertical flammability test. Furthermore, Fourier transform infrared and scanning electron microscopy were utilized to characterize the chemical structure as well as the surface morphology of the flame‐retardant treated twill fabrics, including char area and the edge between unburned fabric and char area. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
The novel flame retarded unsaturated polyester resins have been developed and prepared by introduction of high nitrogen content additives into the polymer matrix in order to verify their effectiveness in the formation of swollen carbonaceous char inhibiting the burning process of the polymer. The intumescent flame retardants (IFRs) based on mixture or metal complex were developed and characterized by particle size distribution, Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), powder X-ray diffraction (XRD), elemental analysis (CHN) and thermogravimetric analysis (TGA). The evaluation of the efficiency of IFRs addition on the flammability and smoke emission of the unsaturated polyester resins (UP) was carried out using the fire hazard (UL-94), limiting oxygen index (LOI) and cone calorimeter (CC) tests, as well as smoke density chamber tests. The volatile compounds evolved during the burning of materials were determined using a steady state tube furnace and a gas chromatograph with mass spectrometer. Furthermore, the prepared materials were subjected to differential scanning calorimetry (DSC), thermogravimetric analysis and water resistance tests. The mechanical properties of the materials were investigated using Shore D hardness and dynamic mechanical thermal analysis (DMA). The structural evaluation of the manufactured materials and samples after the cone calorimetry tests was carried out using scanning electron microscopy (SEM). It was found that the incorporation of new intumescent flame retardants led to the formation of carbonaceous char layers’ inhibiting the decomposition process and limiting the smoke emission. The most promising results were obtained for the resin containing complex designated as ZN3AT, for which the highest reduction in maximum values of heat release rate (419 kW/m2) compared to unmodified polymer (792 kW/m2) were recorded. Apart from that, the prepared intumescent flame retardants affect the cross-linking process as well as the thermal and mechanical properties of the UP.  相似文献   

17.
A novel phosphorus‐containing compound diphenyl‐(1, 2‐dicarboxylethyl)‐phosphine oxide defined as DPDCEPO was synthesized and used as a flame retardant curing agent for epoxy resins (EP). The chemical structure of the prepared DPDCEPO was well characterized by Fourier transform infrared spectroscopy, and 1H, 13C and 31P nuclear magnetic resonance. The DPDCEPO was mixed with curing agent of phthalic anhydride (PA) with various weight ratios into epoxy resins to prepare flame retardant EP thermosets. The flame retardant properties, combustion behavior and thermal analysis of the EP thermosets were respectively investigated by limiting oxygen index (LOI), vertical burning tests (UL‐94), cone calorimeter measurement, dynamic mechanical thermal analysis and thermogravimetric analysis (TGA) tests. The surface morphologies and chemical compositions of the char residues for EP thermosets were respectively investigated by scanning electron microscopy and X‐ray photoelectron spectroscopy (XPS). The water resistant properties of the cured EP were evaluated by putting the samples into distilled water at 70°C for 168 hr. The results revealed that the EP/20 wt% DPDCEPO/80 wt% PA thermosets successfully passed UL‐94 V‐0 flammability rating and the LOI value was as high as 33.2%. The cone test results revealed that the incorporation of DPDCEPO effectively reduced the combustion parameters of the epoxy resin thermosets, such as heat release rate and total heat release. The dynamic mechanical thermal analysis test demonstrated that the glass transition temperature (Tg) decreased with the increase of DPDCEPO content. The TGA results indicated that the incorporation of DPDCEPO promoted the decomposition of epoxy resin matrix ahead of time and led to a higher char yield and thermal stability at high temperatures. The surface morphological structures and analysis of the XPS of the char residues of EP thermosets revealed that the introduction of DPDCEPO benefited the formation of a sufficient, compact and homogeneous char layer with rich flame retardant elements on the epoxy resin material surface during combustion. The mechanical properties and water resistance of the cured epoxy resins were also measured. After water resistance tests, the EP/20 wt% DPDCEPO/80 wt% PA thermosets retained excellent flame retardancy, and the moisture adsorption of the EP thermosets decreased with the increase of DPDCEPO content in EP thermosets because of the existence of the P–C bonds and the rigid aromatic hydrophobic structure in DPDCEPO. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Polyaniline nanofibers and their composites with carbon nanotubes were developed as an effective flame‐retardant material using a facile green method. Polyaniline nanofibers were used as a smart flame‐retardant for acrylonitrile–butadiene–styrene polymer. The polyaniline nanofibers were dispersed in polymer matrix forming well‐dispersed polymer nanocomposites. Effect of polyaniline nanofiber mass ratio on the polymer nanocomposite properties was studied. Polyaniline nanofiber composites with carbon nanotubes were also dispersed in polymer matrix. The thermal stability and flammability properties of the polymer nanocomposites were investigated. The rate of burning of polymer nanocomposites achieved 82.5% reduction (7.32 mm/min) compared with virgin polymer (42.5 mm/min). The reduction in peak heat release rate and total heat release of the polymer nanocomposites containing nanofibers achieved 74 and 34%, respectively. Interestingly, the average mass loss rate was significantly reduced by 58% and the emission of carbon monoxide and carbon dioxide gases were suppressed by 20 and 47%, respectively. The effect of polyaniline nanofibers composites on the flammability of polymer nanocomposites was also studied. Polyaniline nanofibers and their composites were characterized using Fourier transform infrared spectroscopy and transmission and scanning electron microscopy. The dispersion of polyaniline nanofibers in polymer nanocomposites was characterized using transmission electron microscopy. The different polymer nanocomposites were characterized using thermogravimetric analysis, UL94 flame chamber, and cone calorimeter tests. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, we report a new flame retardant, vinyl-Tris-(methoxydiethoxy)silane (VTMS), for use in electrolytes of lithium ion batteries. Burning tests showed that the addition of VTMS at 5–15 vol.% into the currently used electrolyte could effectively reduce the flammability. As long as the added amount was below 10%, electrochemical performance such as reversible capacity and cycling showed little change. In addition, differential scanning calorimetry (DSC) in combination with X-ray photoelectron spectroscopy (XPS) disclosed that VTMS participated in the formation of the surface film on the cathode, which played a pivotal role in markedly improving the thermal stability of the LiCoO2 cathode. This kind of ecofriendly compound provides a new promising direction for the development of organic additives to improve the safety of lithium ion batteries.  相似文献   

20.
Flame retardancy is a desirable property for silk textiles, and it becomes necessity when silk textiles are for interior decorative use in building with public access. However, the flame retardant finishing technology available for silk has significant limitations. In this research, we studied the use of the combination of a hydroxyl-functional organophosphorus oligomer (HFPO) and 1,2,3,4-butanetetracarboxylic acid (BTCA) as a formaldehyde-free flame retardant finishing system for silk. When BTCA is applied to silk, most of BTCA reacts with the hydroxyl group on silk by single ester linkage. In the presence of HFPO, BTCA is able to bond HFPO onto silk by either a BTCA “bridge” between silk and HFPO or a BTCA-HFPO-BTCA cross-linkage between two silk protein molecules. We evaluated the flammability and physical properties of the silk fabric treated with HFPO and BTCA. The treated silk fabric demonstrated a high level of flame retardancy with modest loss in fabric tensile strength. The treated silk passed the vertical flammability test after 15 hand wash (HW) cycles. Increasing the HFPO concentration from 20% to 30% does not show significant improvement in the flame retardant performance of the treated silk. The thermal analysis data demonstrated that HFPO reduces silk's initial thermal decomposition temperature and promotes char formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号