首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
This paper describes two new harmony search (HS) meta-heuristic algorithms for engineering optimization problems with continuous design variables. The key difference between these algorithms and traditional (HS) method is in the way of adjusting bandwidth (bw). bw is very important factor for the high efficiency of the harmony search algorithms and can be potentially useful in adjusting convergence rate of algorithms to optimal solution. First algorithm, proposed harmony search (PHS), introduces a new definition of bandwidth (bw). Second algorithm, improving proposed harmony search (IPHS) employs to enhance accuracy and convergence rate of PHS algorithm. In IPHS, non-uniform mutation operation is introduced which is combination of Yang bandwidth and PHS bandwidth. Various engineering optimization problems, including mathematical function minimization problems and structural engineering optimization problems, are presented to demonstrate the effectiveness and robustness of these algorithms. In all cases, the solutions obtained using IPHS are in agreement or better than those obtained from other methods.  相似文献   

2.
Engineering optimization problems, design problems among them, are multicriteria in their essence. When designing machines, mechanisms, and structures, one has to deal with numerous contradictory criteria.Experience gained in solving engineering optimization and optimal design problems shows that the designer cannot formulate them correctly. Unfortunately, the known optimization methods offer little assistance. To assure a correct formulation and solution of engineering optimization problems, the parameter space investigation (PSI) method and methods of approximation have been developed and widely integrated into different fields of industry, science, and technology. The PSI method has become one of the basic working tools for choosing optimal parameters in many fields of the national economy in Russia.  相似文献   

3.
This paper proposes a novel multi-objective discrete robust optimization (MODRO) algorithm for design of engineering structures involving uncertainties. In the present MODRO procedure, grey relational analysis (GRA), coupled with principal component analysis (PCA), was used as a multicriteria decision making model for converting multiple conflicting objectives into one unified cost function. The optimization process was iterated using the successive Taguchi approach to avoid the limitation that the conventional Taguchi method fails to deal with a large number of design variables and design levels. The proposed method was first verified by a mathematical benchmark example and a ten-bar truss design problem; and then it was applied to a more sophisticated design case of full scale vehicle structure for crashworthiness criteria. The results showed that the algorithm is able to achieve an optimal design in a fairly efficient manner attributable to its integration with the multicriteria decision making model. Note that the optimal design can be directly used in practical applications without further design selection. In addition, it was found that the optimum is close to the corresponding Pareto frontier generated from the other approaches, such as the non-dominated sorting genetic algorithm II (NSGA-II), but can be more robust as a result of introduction of the Taguchi method. Due to its independence on metamodeling techniques, the proposed algorithm could be fairly promising for engineering design problems of high dimensionality.  相似文献   

4.
In this paper, we propose a new whale army optimization algorithm with a view to solving multifarious optimization problems. The key novelty of our approach is to modify the original whale optimization algorithm to make it effective to solve the complicated, large-scale and constrained optimization problems. Our modifications mainly embody two aspects: the beneficial strategic adjustment to set key parameters and to help establish base principles in the original optimizer and the introduction of armed force program which classifies the search whales into different categories to achieve efficient cooperation. We evaluate the performance of the proposed algorithm, using three simple benchmark test functions over thirty CEC-2014 real-parameter numerical optimization problems and three constraint engineering design problems. The test results indicate that this algorithm can provide a faster local convergence rate, a higher convergence accuracy, and a lower computational complexity in comparison to traditional whale optimization algorithms and other sophisticated state of the art whale optimizers. Performance wise, it also surpasses many advanced methods for large-scaled complex functions. Furthermore, in this paper we propose a variant of whale army optimization algorithm to specifically address and solve optimizing constrained problems with a high degree of precision.  相似文献   

5.
Many engineering optimization problems frequently encounter discrete variables as well as continuous variables and the presence of nonlinear discrete variables considerably adds to the solution complexity. Very few of the existing methods can find a globally optimal solution when the objective functions are non-convex and non-differentiable. In this paper, we present a mixed-variable evolutionary programming (MVEP) technique for solving these nonlinear optimization problems which contain integer, discrete, zero-one and continuous variables. The MVEP provides an improvement in global search reliability in a mixed-variable space and converges steadily to a good solution. An approach to handle various kinds of variables and constraints is discussed. Some examples of mixed-variable optimization problems in the literature are tested, which demonstrate that the proposed approach is superior to current methods for finding the best solution, in terms of both solution quality and algorithm robustness.  相似文献   

6.
提出了一种基于正态云模型的果蝇优化算法(NCMFOA).该算法通过直接将果蝇位置赋值给气味浓度判定值和引入正态云模型来刻画果蝇嗅觉搜索行为的随机性与模糊性,从而解决了果蝇优化算法(FOA)不能搜索负值空间的缺陷,并有效克服了FOA算法在解决复杂优化问题时容易陷入局部极值的不足.通过正态云模型熵值的动态调整,使得NCMFOA算法在进化的前期阶段具有较强的随机性与模糊性,以提高算法的全局探索能力;随着迭代次数的增加,算法搜索行为的随机性与模糊性逐渐减弱,使得其局部开发能力逐渐增强,算法收敛精度得到提高.此外,通过引入视觉实时更新方案,进一步加速了算法的收敛速度.用经典的基准测试函数验证了NCMFOA算法的可行性与有效性,结果表明该算法具有收敛速度快、收敛精度高以及鲁棒性好等优点,对于高维复杂优化问题,该算法同样获得了良好的优化效果.将NCMFOA算法用于解决混沌系统的参数估计问题,进一步验证了该算法具有较强的解决实际工程优化问题的能力.  相似文献   

7.
A branch-and-reduce approach to global optimization   总被引:4,自引:0,他引:4  
This paper presents valid inequalities and range contraction techniques that can be used to reduce the size of the search space of global optimization problems. To demonstrate the algorithmic usefulness of these techniques, we incorporate them within the branch-and-bound framework. This results in a branch-and-reduce global optimization algorithm. A detailed discussion of the algorithm components and theoretical properties are provided. Specialized algorithms for polynomial and multiplicative programs are developed. Extensive computational results are presented for engineering design problems, standard global optimization test problems, univariate polynomial programs, linear multiplicative programs, mixed-integer nonlinear programs and concave quadratic programs. For the problems solved, the computer implementation of the proposed algorithm provides very accurate solutions in modest computational time.  相似文献   

8.
《Applied Mathematical Modelling》2014,38(7-8):2000-2014
Real engineering design problems are generally characterized by the presence of many often conflicting and incommensurable objectives. Naturally, these objectives involve many parameters whose possible values may be assigned by the experts. The aim of this paper is to introduce a hybrid approach combining three optimization techniques, dynamic programming (DP), genetic algorithms and particle swarm optimization (PSO). Our approach integrates the merits of both DP and artificial optimization techniques and it has two characteristic features. Firstly, the proposed algorithm converts fuzzy multiobjective optimization problem to a sequence of a crisp nonlinear programming problems. Secondly, the proposed algorithm uses H-SOA for solving nonlinear programming problem. In which, any complex problem under certain structure can be solved and there is no need for the existence of some properties rather than traditional methods that need some features of the problem such as differentiability and continuity. Finally, with different degree of α we get different α-Pareto optimal solution of the problem. A numerical example is given to illustrate the results developed in this paper.  相似文献   

9.
In many engineering optimization problems, the objective and the constraints which come from complex analytical models are often black-box functions with extensive computational effort. In this case, it is necessary for optimization process to use sampling data to fit surrogate models so as to reduce the number of objective and constraint evaluations as soon as possible. In addition, it is sometimes difficult for the constrained optimization problems based on surrogate models to find a feasible point, which is the premise of further searching for a global optimal feasible solution. For this purpose, a new Kriging-based Constrained Global Optimization (KCGO) algorithm is proposed. Unlike previous Kriging-based methods, this algorithm can dispose black-box constrained optimization problem even if all initial sampling points are infeasible. There are two pivotal phases in KCGO algorithm. The main task of the first phase is to find a feasible point when there is no feasible data in the initial sample. And the aim of the second phase is to obtain a better feasible point under the circumstances of fewer expensive function evaluations. Several numerical problems and three design problems are tested to illustrate the feasibility, stability and effectiveness of the proposed method.  相似文献   

10.
《Optimization》2012,61(7):895-917
Generalized geometric programming (GGP) problems occur frequently in engineering design and management, but most existing methods for solving GGP actually only consider continuous variables. This article presents a new branch-and-bound algorithm for globally solving GGP problems with discrete variables. For minimizing the problem, an equivalent monotonic optimization problem (P) with discrete variables is presented by exploiting the special structure of GGP. In the algorithm, the lower bounds are computed by solving ordinary linear programming problems that are derived via a linearization technique. In contrast to pure branch-and-bound methods, the algorithm can perform a domain reduction cut per iteration by using the monotonicity of problem (P), which can suppress the rapid growth of branching tree in the branch-and-bound search so that the performance of the algorithm is further improved. Computational results for several sample examples and small randomly generated problems are reported to vindicate our conclusions.  相似文献   

11.
B-spline curves and surfaces are generally used in computer aided design (CAD), data visualization, virtual reality, surface modeling and many other fields. Especially, data fitting with B-splines is a challenging problem in reverse engineering. In addition to this, B-splines are the most preferred approximating curve because they are very flexible and have powerful mathematical properties and, can represent a large variety of shapes efficiently [1]. The selection of the knots in B-spline approximation has an important and considerable effect on the behavior of the final approximation. Recently, in literature, there has been a considerable attention paid to employing algorithms inspired by natural processes or events to solve optimization problems such as genetic algorithms, simulated annealing, ant colony optimization and particle swarm optimization. Invasive weed optimization (IWO) is a novel optimization method inspired from ecological events and is a phenomenon used in agriculture. In this paper, optimal knots are selected for B-spline curve fitting through invasive weed optimization method. Test functions which are selected from the literature are used to measure performance. Results are compared with other approaches used in B-spline curve fitting such as Lasso, particle swarm optimization, the improved clustering algorithm, genetic algorithms and artificial immune system. The experimental results illustrate that results from IWO are generally better than results from other methods.  相似文献   

12.
For reliability-based design optimization (RBDO) of practical structural/mechanical problems under highly nonlinear constraints, it is an important characteristic of the performance measure approach (PMA) to show robustness and high convergence rate. In this study, self-adjusted mean value is used in the PMA iterative formula to improve the robustness and efficiency of the RBDO-based PMA for nonlinear engineering problems based on dynamic search direction. A novel merit function is applied to adjust the modified search direction in the enriched self-adjusted mean value (ESMV) method, which can control the instability and value of the step size for highly nonlinear probabilistic constraints in RBDO problems. The convergence performance of the enriched self-adjusted PMA is illustrated using four nonlinear engineering problems. In particular, a complex engineering example of aircraft stiffened panel is used to compare the RBDO results of different reliability methods. The results demonstrate that the proposed self-adjusted steepest descent search direction can improve the computational efficiency and robustness of the PMA compared to existing modified reliability methods for nonlinear RBDO problems.  相似文献   

13.
Due to the complexity of super tall buildings, many well-known optimization algorithms are not well applicable. Using structural lateral system of super tall buildings as engineering background, the paper developed a practical fractional numerical optimization method (FNOM), which applies fractional strategy and quasi-constant assumption, to reduce material cost and embodied carbon cost by searching the optimal structural dimensions. Firstly, two kinds of relationships among optimization variables (structural dimensions), driven design constraints (the interstory drift and the natural period) and optimization objective (cost including material cost and embodied carbon cost) are mathematically modelled. Genetic algorithm (GA) is then introduced to search the optimal structural dimensions based on the quasi-constant assumption of virtual work and internal work of the inactive components. Thirdly, fractional strategy is applied to create assemblies composed of different structural component sets, and the assemblies are then to be optimized in proper sequences. Fourthly, FNOM is implemented as a user-friendly software called C-FNO to practically support the preliminary design of super-tall buildings. Finally, a 700 m high super-tall building is employed to illustrate FNOM by using C-FNO, and the results show that only three design constraints of the interstory drift, the natural period and the stress ratio need to be solved during each optimization step. Belt truss, mega column, outrigger truss and shear wall of the super tall building should be optimized in sequence to save more cost. A great amount of cost can be still saved for the super tall building with the normal traditional design.  相似文献   

14.
Honeycomb structures with better balance between lightweight and crashworthiness have aroused growing attentions. However, structural parameters design by traditional optimization algorithm in small design space is not sufficient to significantly enhance the specific energy absorption (SEA) with the lower peak acceleration (amax). In this paper, a two-stage hybrid optimization for honeycomb-type cellular parameters is proposed to achieve rapid positioning of design space and significantly increase crashworthiness in a larger variable domain under out-of-plane dynamic impact. In stage I, a Taguchi-based grey correlation discrete optimization, combining Taguchi analysis, grey relational analysis, analysis of variance (ANOVA) with grey entropy measurement, is performed to determine the initial optimal value with a higher robustness and the significant influence variables. In stage II, a multi-objective design technique, namely non-nominated sorting genetic algorithm II based on surrogated model, is adopted to maximize the SEA and minimize the amax in a relatively small design domain. And it is found that the proposed two-stage hybrid method can broaden the optimal design space compared to that of traditional method attributable to its center point positioned by stage I. And the final optimization based on the proposed strategy is superior to the original structure, i.e., the SEA is increased by 47.55% and the amax is decreased by 80.8%. Therefore, the proposed algorithm can also be used to solve other more complicated engineering problems in a large design space with insightful design data.  相似文献   

15.
Martin Gugat  Michael Herty 《PAMM》2013,13(1):587-588
We present results on a method for infinite dimensional constrained optimization problems. In particular, we are interested in state constrained optimal control problems and discuss an algorithm based on penalization and smoothing. The algorithm contains update rules for the penalty and the smoothing parameter that depend on the constraint violation. Theoretical as well as numerical results are given. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
This study develops an improved moth-flame optimization algorithm, which is a recently proposed optimizer based on moth behavior in nature. It has achieved favorable results in medical science, educational evaluation, and other fields. However, the convergence rate of the original moth-flame optimization algorithm is too fast in the running process, and it is prone to fall into local optimum, which leads to the failure to produce the high-quality optimal result. Accordingly, this paper proposes a reinforced technique for the moth-flame optimization algorithm. Firstly, the simulated annealing strategy is introduced into the moth-flame optimization algorithm to boost the advantage of the algorithm in the local exploitation process. Then, the idea of the quantum rotation gate is integrated to enhance the global exploration ability of the algorithm and ameliorate the diversity of the moth. These two steps maintain the relationship between exploitation and exploration as well as strengthen the performance of the algorithm in both phases. After that, the method is compared with ten well-regarded and ten alternative algorithms on benchmark functions to verify the effectiveness of the approach. Also, the Wilcoxon signed rank and Friedman assessment were performed to verify the significance of the proposed method against other counterparts. The simulation results reveal that the two introduced strategies significantly improve the exploration and exploitation capacity of moth-flame optimization algorithm. Finally, the algorithm is utilized to feature selection and two engineering problems, including pressure vessel design and multiple disk clutch brake problems. In these practical applications, the novel algorithm also achieves particularly notable results, which also illustrates that the algorithm is qualified is an effective auxiliary appliance in solving complex optimization problems.  相似文献   

17.
In solving certain optimization problems, the corresponding Lagrangian dual problem is often solved simply because in these problems the dual problem is easier to solve than the original primal problem. Another reason for their solution is the implication of the weak duality theorem which suggests that under certain conditions the optimal dual function value is smaller than or equal to the optimal primal objective value. The dual problem is a special case of a bilevel programming problem involving Lagrange multipliers as upper-level variables and decision variables as lower-level variables. Another interesting aspect of dual problems is that both lower and upper-level optimization problems involve only box constraints and no other equality of inequality constraints. In this paper, we propose a coevolutionary dual optimization (CEDO) algorithm for co-evolving two populations—one involving Lagrange multipliers and other involving decision variables—to find the dual solution. On 11 test problems taken from the optimization literature, we demonstrate the efficacy of CEDO algorithm by comparing it with a couple of nested smooth and nonsmooth algorithms and a couple of previously suggested coevolutionary algorithms. The performance of CEDO algorithm is also compared with two classical methods involving nonsmooth (bundle) optimization methods. As a by-product, we analyze the test problems to find their associated duality gap and classify them into three categories having zero, finite or infinite duality gaps. The development of a coevolutionary approach, revealing the presence or absence of duality gap in a number of commonly-used test problems, and efficacy of the proposed coevolutionary algorithm compared to usual nested smooth and nonsmooth algorithms and other existing coevolutionary approaches remain as the hallmark of the current study.  相似文献   

18.
A high-ranking goal of interdisciplinary modeling approaches in science and engineering are quantitative prediction of system dynamics and model based optimization. Quantitative modeling has to be closely related to experimental investigations if the model is supposed to be used for mechanistic analysis and model predictions. Typically, before an appropriate model of an experimental system is found different hypothetical models might be reasonable and consistent with previous knowledge and available data. The parameters of the models up to an estimated confidence region are generally not known a priori. Therefore one has to incorporate possible parameter configurations of different models into a model discrimination algorithm which leads to the need for robustification. In this article we present a numerical algorithm which calculates a design of experiments allowing optimal discrimination of different hypothetic candidate models of a given dynamical system for the most inappropriate (worst case) parameter configurations within a parameter range. The design comprises initial values, system perturbations and the optimal placement of measurement time points, the number of measurements as well as the time points are subject to design. The statistical discrimination criterion is worked out rigorously for these settings, a derivation from the Kullback-Leibler divergence as optimization objective is presented for the case of discontinuous Heaviside-functions modeling the measurement decision which are replaced by continuous approximations during the optimization procedure. The resulting problem can be classified as a semi-infinite optimization problem which we solve in an outer approximations approach stabilized by a suggested homotopy strategy whose efficiency is demonstrated. We present the theoretical framework, algorithmic realization and numerical results.  相似文献   

19.
In many practical problems such as engineering design problems, criteria functions cannot be given explicitly in terms of design variables. Under this circumstance, values of criteria functions for given values of design variables are usually obtained by some analyses such as structural analysis, thermodynamical analysis or fluid mechanical analysis. These analyses require considerably much computation time. Therefore, it is not unrealistic to apply existing interactive optimization methods to those problems. On the other hand, there have been many trials using genetic algorithms (GA) for generating efficient frontiers in multi-objective optimization problems. This approach is effective in problems with two or three objective functions. However, these methods cannot usually provide a good approximation to the exact efficient frontiers within a small number of generations in spite of our time limitation. The present paper proposes a method combining generalized data envelopment analysis (GDEA) and GA for generating efficient frontiers in multi-objective optimization problems. GDEA removes dominated design alternatives faster than methods based on only GA. The proposed method can yield desirable efficient frontiers even in non-convex problems as well as convex problems. The effectiveness of the proposed method will be shown through several numerical examples.  相似文献   

20.
Two basic problems in reliability-based structural optimization   总被引:5,自引:0,他引:5  
Optimization of structures with respect to performance, weight or cost is a well-known application of mathematical optimization theory. However optimization of structures with respect to weight or cost under probabilistic reliability constraints or optimization with respect to reliability under cost/weight constraints has been subject of only very few studies. The difficulty in using probabilistic constraints or reliability targets lies in the fact that modern reliability methods themselves are formulated as a problem of optimization. In this paper two special formulations based on the so-called first-order reliability method (FORM) are presented. It is demonstrated that both problems can be solved by a one-level optimization problem, at least for problems in which structural failure is characterized by a single failure criterion. Three examples demonstrate the algorithm indicating that the proposed formulations are comparable in numerical effort with an approach based on semi-infinite programming but are definitely superior to a two-level formulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号