首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of crystallinity of polylactide (PLA) on the structure and properties of tough PLA blends with PEG-b-PPG-b-PEG block copolymers was studied. PLA was melt blended with a set of the copolymers with varying ratio of the hydrophilic (PEG) and hydrophobic (PPG) blocks. Although the blend phase structure depended on the copolymer molar mass and PEG content, as well as on the copolymer concentration in the blend, crystallinity also played an important role, increasing the copolymer content in the amorphous phase and enhancing phase separation. The influence of crystallinity on the thermal and mechanical properties of the blends depended on the copolymer used and its content. The blends, with PLA crystallinity of 25 ÷ 34 wt%, exhibited relatively high glass transition temperature ranging from 45 to 52 °C, and melting beginning above 120 °C. Although with a few exceptions crystallinity worsened the drawability and toughness, these properties were improved with respect to neat crystalline PLA in the case of partially miscible blends, in which fine liquid inclusions of the modifier were dispersed in PLA rich matrix. About 20-fold increase of the elongation at break and about 4-fold increase of the tensile impact strength were reached at a small content (10 wt%) of the modifier. Moreover, crystallinity decreased oxygen and water vapor transmission rates through neat PLA and the blend, and the barrier property for oxygen of the latter was better than that of neat polymer.  相似文献   

2.
研究了聚乳酸和改性淀粉共混挤出前的固相酯化反应对共混体系的增容作用。比较挤出样条经二氯甲烷抽提后剩余物的固体13C-NMR光谱谱图,发现未经酯化反应时剩余物为淀粉,经酯化反应后剩余物的固体13C-NMR光谱谱图在20ppm和170ppm处出现聚乳酸特征的碳吸收峰,说明剩余物中含有聚乳酸和淀粉的接枝物。由共混物中聚乳酸的端羧基含量的测定结果也能说明酯化反应后共混物剩余物中含有聚乳酸和淀粉的接枝物。考察了生成的接枝物对共混体系相容性的影响,扫描电镜分析结果表明,经过预处理酯化反应后共混物相容性得到了提高。挤出样条取向拉伸后进行力学性能测试,发现酯化反应明显提高了力学性能。该方法可以通过设计共混挤出过程实现改变共混物相容性的目的,具有广阔的前景和很强的应用价值。  相似文献   

3.
In this study, a highly toughened PLA was prepared through physical melt-blending with EVA at the presence of hydrophilic nanosilica and SEBS-g-MA block copolymer compatibilizer. The effect of nanosilica and compatibilizer on the morphology, mechanical properties, and linear rheology of the PLA/EVA blends was also investigated. According to TEM images, nanosilica was selectively located in the PLA matrix while some were placed on the interface between the two polymers as was also predicted by thermodynamic and kinetic analysis. Upon the addition of nanoparticles, the interfacial adhesion between the phases was enhanced and the average droplet size decreased. Interestingly, incorporation of SEBS-g-MA induced morphological changes as the spherical EVA droplets turned into a cylindrical shape. DSC results indicated that blending with EVA copolymer resulted in the reduction of crystallization of PLA matrix; however, the crystallinity increased at the presence of nanoparticles up to 5 wt%. The addition of compatibilizer considerably hindered the crystallization of the PLA phase. PLA/EVA blend containing optimum levels of nanosilica exhibited considerably enhanced tensile toughness, elongation at break, and impact strength. On the other hand, the simultaneous addition of nanoparticles and SEBS-g-MA led to synergistic toughening effects and the compatibilized blend containing nanosilica exhibited excellent impact toughness. For instance, the elongation at break of the compatibilized PLA/EVA blend containing the optimal content of nanosilica was increased from 7% to 121% (compared to neat sample). The notched Izod impact strength was also increased from 5.1 to 65 kJ/m2. Finally, the microstructure of the blends was assessed by rheological measurements.  相似文献   

4.
Polylactide (PLA) was plasticized by polyethylene glycols (PEGs) with five different molecular weights (Mw = 200–20,000 g/mol). The effects of content and molecular weight of PEG on the crystallization and impact properties of PLA were studied by wide‐angle X‐ray diffraction, differential scanning calorimetry, scanning electron microscopy, transmission electron microscopy, and V‐notched impact tests, respectively. The results revealed that PEG‐10,000 could significantly improve the crystallization capacity and impact toughness of PLA. When the PEG‐10,000 content ranged from 0 to 20 wt%, the increases in both V‐notched Izod and Charpy impact strengths of PLA/PEG‐10,000 blends were 206.10% and 137.25%, respectively. Meanwhile, the crystallinity of PLA/PEG‐10,000 blends increased from 3.95% to 43.42%. For 10 wt% PEG content, the crystallization and impact properties of PLA/PEG blends mainly depended upon PEG molecular weight. With increasing the Mw of PEG, the crystallinity and impact strength of PLA/PEG blends first decreased and then increased. The introduction of PEG reduced the intermolecular force and enhanced the mobility of PLA chains, thus improving the crystallization capacity and flexibility of PLA. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
熔融共混制备了不同组分比的聚乳酸(PLA)/乙烯-醋酸乙烯酯共聚物(EVA)共混物,采用扫描电子显微镜(SEM)、溶剂选择性蚀刻和旋转流变仪研究了共混物不相容的相形态及其黏弹响应.研究结果表明,PLA/EVA共混物为典型的热力学不相容体系,两基体组分间的界面张力约为2.2 mN/m;因此随组分比的不同,共混物表现出"海-岛"分散和双连续的不相容相形态;体系中EVA的相反转浓度约为50 wt%~60 wt%,这与黏性模型对相反点预测的结果一致;与双连续相形态的体系相比,乳液模型能够更好的描述具有"海-岛"分散形态的体系的线性黏弹响应,共混体系相对较宽的相反转区域主要源于两组分间较大的弹性比以及EVA自身的屈服行为.  相似文献   

6.
A miscibility and phase behavior study was conducted on poly(ethylene glycol) (PEG)/poly(l ‐lactide‐ε‐caprolactone) (PLA‐co‐CL) blends. A single glass transition evolution was determined by differential scanning calorimetry initially suggesting a miscible system; however, the unusual Tg bias and subsequent morphological study conducted by polarized light optical microscopy (PLOM) and atomic force microscopy (AFM) evidenced a phase separated system for the whole range of blend compositions. PEG spherulites were found in all blends except for the PEG/PLA‐co‐CL 20/80 composition, with no interference of the comonomer in the melting point of PEG (Tm = 64 °C) and only a small one in crystallinity fraction (Xc = 80% vs. 70%). However, a clear continuous decrease in PEG spherulites growth rate (G) with increasing PLA‐co‐CL content was determined in the blends isothermally crystallized at 37 °C, G being 37 µm/min for the neat PEG and 12 µm/min for the 20 wt % PLA‐co‐CL blend. The kinetics interference in crystal growth rate of PEG suggests a diluting effect of the PLA‐co‐CL in the blends; further, PLOM and AFM provided unequivocal evidence of the interfering effect of PLA‐co‐CL on PEG crystal morphology, demonstrating imperfect crystallization in blends with interfibrillar location of the diluting amorphous component. Significantly, AFM images provided also evidence of amorphous phase separation between PEG and PLA‐co‐CL. A true Tg vs. composition diagram is proposed on the basis of the AFM analysis for phase separated PEG/PLA‐co‐CL blends revealing the existence of a second PLA‐co‐CL rich phase. According to the partial miscibility established by AFM analysis, PEG and PLA‐co‐CL rich phases, depending on blend composition, contain respectively an amount of the minority component leading to a system presenting, for every composition, two Tg's that are different of those of pure components. © 2013 Wiley Periodicals, Inc. J. Polym. Sci. Part B: Polym. Phys. 2014 , 52, 111–121  相似文献   

7.
Poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) blends were prepared using a carboxylic acid salt as nucleating agent (NA). The effect of NA on the crystallization kinetics of PLA and PLA/PBS blend was investigated using a differential scanning calorimeter, a polarized optical microscope and a wideangle X-ray diffractometer. The crystallization rate of PLA component in PLA/PBS blends is increased effectively by NA through fast nucleation and growth rate of PLA α'-form crystal, which is confirmed by isothermal crystallization behavior of PLA/PBA/NA composites. The isothermal crystallization results also show that the incorporation of NA induces heterogeneous nucleation mechanism in PLA component. The increased number of crystal nuclei hinders the increase of average grain size of PLA component in composites but contributes to a higher crystallinity of both PLA and PBS components in PLA/PBS blends. Finally, the mechanical properties and dynamic mechanical properties of PLA/PBS/NA composites are improved because of the increased crystallinity, which are superior to that of PLA/PBS blend.  相似文献   

8.
《先进技术聚合物》2018,29(7):2121-2133
Polylactide (PLA)/poly(butylene succinate) (PBS) blend films modified with a compatibilizer and a plasticizer were hot‐melted through a twin screw extruder and prepared by hydraulic press. Toluene diisocyanate (TDI) and polylactide‐grafted‐maleic anhydride (PLA‐g‐MA) were used as compatibilizers, while triethyl citrate and tricresyl phosphate acted as plasticizers. The effects of the type and content of compatibilizer and plasticizer on the mechanical characteristics, thermal properties, crystallization behavior, and phase morphology of the PLA/PBS blend films were investigated. Reactive compatibilization at increasing levels of TDI improved the compatibility of the PLA and PBS, affecting the toughness of the films. As evidenced by scanning electron microscope, the addition of TDI enhanced the interfacial adhesion of the blends, leading to the appearance of many elongated fibrils at the fracture surface. Furthermore, PLA/PBS blending with both TDI and PLA‐g‐MA led to an acceleration of the cold crystallization rate and an increment of the degree of crystallinity ( ). Toluene diisocyanate could be a more effective compatibilizer than PLA‐g‐MA for PLA/PBS blend films. The synergistic combination of compatibilizer and plasticizer brought a significant improvement in elongation at break and tensile‐impact toughness of the PLA/PBS blends, compared with neat PLA. Their failure mode changed from brittle to ductile due to the improved compatibility and molecular segment mobility of the PLA and PBS phases. Differential scanning calorimeter results revealed that the plasticizers triethyl citrate and tricresyl phosphate changed the thermal behavior of Tcc and Tm, affecting α′ and α crystal formations. However, these plasticizers only slightly improved the thermal stability of the films.  相似文献   

9.
Two novel biodegradable copolymers, including poly(ethylene glycol)-succinate copolymer (PES) and poly(ethylene glycol)-succinate-l-lactide copolymer (PESL), have been successfully synthesized via melt polycondensation using SnCl2 as a catalyst. The copolymers were used to toughen PLA by melt blending. The DSC and SEM results indicated that the two copolymers were compatible well with PLA, and the compatibility of PESL was superior to that of PES. The results of tensile testing showed that the extensibility of PLA was largely improved by blending with PES or PESL. At same blending ratios, the elongation at break of PLA/PESL blends was far higher than that of PLA/PES ones. The elongation maintained stable through aging for 3 months. The moisture absorption of the blends enhanced due to the strong moisture absorption of PEG segments in PES or PESL molecules, which did not directly lead to enhance the hydrolytic degradation rate of the PLA. The PLA blends containing 20–30 wt% PES or PESL were high transparent materials with high light scattering. The toughening PLA materials could potentially be used as a soft biodegradable packaging material or a special optical material.  相似文献   

10.
In contrast to typical starch esterification in an aqueous solution, which are carried out at elevated to ambient reaction temperatures, a low reaction temperature was applied in this study to minimize the starch chain hydrolysis. The physical properties of the modified starch, obtained from an esterification of cassava starch with long-chain fatty acid chlorides carried out in aqueous media at 4°C, were characterized using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and contact angle measurements. The modified starches show improvement in thermal stability and hydrophobicity, which can be further optimized by varying the types of acid chlorides and the reaction conditions. The starch products have high potential for use as fillers for biodegradable polymers, especially polylactic acid (PLA), as their tunable hydrophobicity can impose strong effect on controlling of the PLA's hydrolytic degradation rate for specific applications. Results on mechanical properties of the blends between the modified starch and PLA show an improvement in modulus of the polymer.  相似文献   

11.
Citric acid (CA)–modified hydrogels from corn starch and chitosan were synthesized using a semidry condition. This strategy has great benefits of friendly environment because of the absence of organic solvents and compatible with the industrial process. The hydrogel blends were prepared with starch/chitosan ratios of 75/25, 50/50, and 25/75. The thermal stability, morphology, water absorption, weight loss in water, and methylene blue absorption were determined. Multi‐carboxyl structure of CA could result in a chemical cross‐linking reaction between starch, chitosan, and CA. The cross‐linking reaction between free hydroxyl groups of starch, amino groups of chitosan, and carboxyl groups of CA has been confirmed by attenuated total reflectance infrared (ATR‐IR) spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) analysis. The water absorption properties of CA‐modified hydrogel blends were increased significantly compared with the native starch and chitosan. Moreover, the hydrogel blends modified with CA showed good water resistance and gel content. The morphology study confirmed the complete chemical cross‐linking and porous structure of hydrogel blends. The hydrogel blend with the starch/chitosan ratio of 50/50 presented powerful absorption of methylene blue as well as chemical cross‐linking reaction and dense structure. In sum, the hydrogel blend comprising 50% starch and 50% chitosan has the potential to be applied for water maintaining at large areas, for example, in agriculture.  相似文献   

12.
边新超  陈学思 《高分子科学》2016,34(9):1070-1078
Poly(ether urethane)s(PEU), including PEUI15 and PEUH15, were prepared through chain-extension reaction of poly(ethylene glycol)(PEG-1500) using diisocyanate as a chain extender, including isophorone diisocyanate(IPDI) and hexamethylene diisocyanate(HDI). These PEUs were used to toughen polylactide(PLA) by physical and reactive blending.Thermal, morphological, mechanical and aging properties of the blends were investigated in detail. These PEUs were partially compatible with PLA. The elongation at break of the reactive blends in the presence of triphenyl phosphate(TPP)for PLA with PEUH15 or PEUI15 was much higher than that of the physical blends. The aging test was carried out at-20 °C for 50 h in order to accelerate the crystallization of PEUs. The PEUs in the PLA/PEU blends produced crystallization and formed new phase separation with PLA, resulting in the declined toughness of blends. Fortunately, under the aging condition,although PEUH15 in blends could also form crystallization, the reactive blend of PLA/PEUH15/TPP(80/20/2) had higher toughness than the other blends. The elongation at break of PLA/PEUH15/TPP(80/20/2) dropped to 287% for the aging blend from 350% for the original blend. The tensile strength and modulus of PLA/PEUH15/TPP blend did not change obviously because of the crystallization of PEUH15.  相似文献   

13.
A significant enhancement in isothermal crystallization kinetics of biodegradable polylactide (PLA) in its immiscible blends can be accomplished through blending it with a comb-like copolymer. PLA was blended with poly(ethylene glycol) methyl ether acrylate (PEGA) and poly[poly(ethylene glycol) methyl ether acrylate] (PPEGA, a comb-like copolymer), respectively. The results measured from phase contrast optical microscopy (PCOM) and differential scanning calorimetry (DSC) indicate that PLA and PEGA components are miscible, whereas PLA and PPEGA components are immiscible. The study of crystallization kinetics for PLA/PEGA and PLA/PPEGA blends by means of polarized optical microscopy (POM) and DSC indicates that both PEGA and PPEGA significantly increase the PLA spherulitic growth rates, G, although PLA/PPEGA blends are immiscible and the glass transition temperatures of PLA only have slight decreases. PPEGA component enhances nucleation for PLA crystallization as compared with PEGA component owing to the heterogeneous nucleation effect of PPEGA at the low composition of 20 wt%, while PLA crystallization-induced phase separation for PLA/PEGA blend might cause further nucleation at the high composition of 50 wt%. DSC measurement further demonstrates that isothermal crystallization kinetics can be relatively more enhanced for PLA/PPEGA blends than for PLA/PEGA blends. The “abnormal” enhancement in G for PLA in its immiscible blends can be explained by local interfacial interactions through the densely grafted PEGA side chains in the comb-like PPEGA, even though the whole blend system (PLA/PPEGA blends) represents an immiscible one.  相似文献   

14.
将聚乳酸(PLA)、聚碳酸酯(PPC)及β-羟基丁酸酯与β-羟基戊酸酯共聚物(PHBV)以溶液浇注法制备了各种不同比例的共混膜(60/20/20,40/20/40,40/40/20,20/60/20,20/40/40,20/20/60)。采用示差扫描量热分析(DSC)和热重分析(TG)研究了共混物的热性能,采用万能材料试验机研究了共混物的力学性能,通过土壤悬浊拟环境降解实验和扫描电子显微镜(SEM)研究了共混材料的环境生物降解性能。结果显示,该三元共混体系是部分相容的体系,PLA增加了材料的强度,PPC增加了材料的断裂伸长,PHBV则提高了材料的环境生物降解速率,三者优势互补,是一种有应用前景的生物降解共混体系。  相似文献   

15.
Poly(ε‐caprolactone)/polylactide blend (PCL/PLA) is an interesting biomaterial because the two component polymers show good complementarity in their physical properties. However, PCL and PLA are incompatible thermodynamically and hence the interfacial properties act as the important roles controlling the final properties of their blends. Thus, in this work, the PCL/PLA blends were prepared by melt mixing using the block copolymers as compatibilizer for the studies of interfacial properties. Several rheological methods and viscoelastic models were used to establish the relations between improved phase morphologies and interfacial properties. The results show that the interfacial behaviors of the PCL/PLA blends highly depend on the interface‐located copolymers. The presence of copolymers reduces the interfacial tension and emulsified the phase interface, leading to stabilization of the interface and retarding both the shape relaxation and the elastic interface relaxation. As a result, besides the relaxation of matrices (τm) and the shape relaxation of the dispersed PLA phase (τF), a new relaxation behavior (τβ), which is attribute to the relaxation of Marangoni stresses tangential to the interface between dispersed PLA phase and matrix PCL, is observed on the compatibilized blends. In contrast to that of the diblock copolymers, the triblock copolymers show higher emulsifying level. However, both can improve the overall interfacial properties and enhance the mechanical strength of the PCL/PLA blends as a result. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 756–765, 2010  相似文献   

16.
The low‐temperature mechanical behavior of semicrystalline polymer blends is investigated. Isotactic polypropylene (iPP) is blended with both Zeigler–Natta polyethylene (PE) and metallocene PE. Transmission electron microscopy (TEM) on failed tensile bars reveals that the predominate failure mode in the Zeigler–Natta blend is interfacial, while that in the metallocene blend is failure of the iPP matrix. The observed change in failure mode is accompanied by a 40% increase in both tensile toughness and elongation at −10 °C. We argue that crystallite anchoring of interfacially entangled chains is responsible for this dramatic property improvement in the metallocene blend. The interfacial width between PE and iPP melts is approximately 40 Å, allowing significant interfacial entanglement in both blends. TEM micrographs illustrate that the segregation of low molecular weight amorphous material in the Zeigler–Natta blend reduces the number and quality of crystallite anchors as compared with the metallocene blend. The contribution of anchored interfacial structure was further explored by introducing a block copolymer at the PE/iPP interface in the metallocene blend. Small‐angle X‐ray scattering (SAXS) experiments show the block copolymer dilutes the number of crystalline anchors, decoupling the interface. Increasing the interfacial coverage of the block copolymer reduces the number of anchored interfacial chains. At 2% block copolymer loading, the low‐temperature failure mode of the metallocene blend changes from iPP failure to interfacial failure, reducing the blend toughness and elongation to that of the Zeigler–Natta blend. This work demonstrates that anchored interfacial entanglements are a critical factor in designing semicrystalline blends with improved low‐temperature properties. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 108–121, 2000  相似文献   

17.
This work focuses on satisfactorily toughening and reinforcing poly(lactic acid)/thermoplastic polyurethane (PLA/TPU) blend with low TPU content (10 wt%) using appropriate amounts of hydrophobic silica nanoparticles (SiO2) via simple melt mixing. Both thermodynamic prediction and transmission electron microscopy micrographs demonstrate that most SiO2 nanoparticles distribute at interfaces between the PLA and TPU phases. This improves interfacial adhesion between the phases, which is attributed to good bonding strength between the PLA and SiO2 via hydrophobic interaction and formation of hydrogen bonds between the TPU and SiO2. The PLA/TPU (90/10) ternary blend nanocomposite with 2 wt% SiO2 exhibits obviously high impact strength (about 5.0 and 12.6 times that of the corresponding blend and PLA, respectively) and higher tensile strength than the blend and even the PLA. Crazing is the main reason for improved impact toughnesses of the blend nanocomposites. This work provides a simple and effective strategy to endow PLA/elastomer blends with optimum strength–toughness balance by adding appropriate amounts of nanoparticles.  相似文献   

18.
Due to the environmental pollution caused by the petroleum-based polymer, poly (lactic acid) (PLA), a biodegradable and biocompatible polymer that obtained from natural and renewable sources, has attracted widespread attention. However, the brittleness of PLA greatly limits its application. In this study, the super toughened PLA-based blends were obtained by compatibilizing the PLA/thermoplastic polyurethane (TPU) blends with the polyurethane elastomer prepolymer (PUEP) as an active compatibilizer. The mechanical properties, thermal properties and corresponding toughening mechanism of PLA/TPU/PUEP system were studied by tensile test, instrumented impact test, dynamic mechanical analysis (DMA), scanning electronic microscope (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). All the results demonstrate that the isocyanate (−NCO) group in PUEP is successfully reacted with the –OH groups at both sides of the PLA and the obtained polyurethane (PU)~PLA copolymer (PU ~ cõ PLA) significantly improves the interfacial compatibility of PLA/TPU blends. The gradually refined dispersed phase size and fuzzy phase interface as displayed in SEM images suggest a good interfacial compatibilization in the PLA/TPU/PUEP blends, probably due to the isocyanate reaction between PLA and PUEP. And the interfacial reaction and compatibilization among the components led to the formation of super toughened PLA/TPU/PUEP blends. And the instrumented impact results indicate that most of the impact toughness is provided by the crack propagation rather than the crack initiation during the entire fracture process.  相似文献   

19.
《先进技术聚合物》2018,29(2):785-794
A study on the influence of flame‐retardant types, poly(butylene succinate) (PBS) contents, and combination of flame retardant and PBS on the mechanical, thermal, morphological, and flame retardancy properties of polylactide (PLA) and PLA/PBS blends was investigated. Blending of PLA, PBS, and flame retardant was prepared by a twin screw extruder. Tricresyl phosphate (TCP) and montmorillonite (MMT) were used as a flame retardant, whereas PBS acted as a flexible material for enhancing the fire resistance and toughness of PLA, respectively. The results revealed that the introducing of TCP and MMT greatly improved the impact strength of the PLA. The impact toughness of PLA blends with 20 wt% of PBS increased to about 244% that of neat PLA. The addition of flame retardants markedly improved the limiting oxygen index of PLA from 18.0% to 30.1% and 24.3% for the blends containing TCP and MMT. The V‐0 rating in UL‐94 testing was achieved with PLA/TCP blend. Elongation at break, impact toughness, and thermal stability of PLA significantly increased with the increment of PBS concentration. The synergistic effect of flame retardant and PBS afforded the PLA blends with outstanding increase of impact resistance. Furthermore, the flame retardant of TCP in the system not only affected dripping behavior and total flame time of PLA/PBS blends but also improved limiting oxygen index values due to the forming of char layer and inhibiting of burning mechanism.  相似文献   

20.
Ternary blends of PLA/PBS/CSW with different weight fractions were prepared using a vane extruder. The mechanical properties, morphology, crystallization behavior and thermal stability of the blends were investigated. For the PLA/CSW blend, the tensile strength decreased, the flexural strength and modulus increased compared with pure PLA. For PBS, the addition of CSW had little influence on the mechanical properties. For the ternary blends PLA/PBS/CSW, the tensile strength, flexural strength and modulus decreased compared with pure PLA, while the elongation at break and the impact strength increased significantly. The brittle-ductile transition of the blends took place when the PBS weight fraction reaching 30 wt%. As a soft component in the blends, PBS was beneficial to improve the tensile ductility and the toughness of PLA. SEM measurements reveal that PLA/PBS/CSW blends were immiscible. When the weight fraction of PBS was 50 wt%, significant phase separation was observed, and CSW had preferential location in the PBS phase of the blend. DSC measurement and POM observation reveal that CSW had a heterogeneous nucleation effect on PLA and PBS matrix. The addition of PBS improved the crystallization of PLA and the thermal resistance of the PLA/PBS/CSW blends significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号