首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
This paper studies the adaptive cluster synchronization of a generalized linearly coupled network with time-varying delay and distributed delays. This network includes nonidentical nodes displaying different local dynamical behaviors, while for each cluster of that network the internal dynamics is uniform (such as chaotic, periodic, or stable behavior). In particular, the generalized coupling matrix of this network can be asymmetric and weighted. Two different adaptive laws of time-varying coupling strength and a linear feedback control are designed to achieve the cluster synchronization of this network. Some sufficient conditions to ensure the cluster synchronization are obtained by using the invariant principle of functional differential equations and linear matrix inequality (LMI). Numerical simulations verify the efficiency of our proposed adaptive control method.  相似文献   

2.
This paper investigates the exponential synchronization problem of coupled oscillators networks with disturbances and time-varying delays. On basis of graph theory and stochastic analysis theory, a feedback control law is designed to achieve exponential synchronization. By constructing a global Lyapunov function for error network, both pth moment exponential synchronization and almost sure exponential synchronization of drive-response networks are obtained. Finally, a numerical example is given to show the effectiveness of the proposed criteria.  相似文献   

3.
姚洪兴  谢勇  王树国 《应用数学》2012,25(2):460-466
主要研究了带有时变耦合部分且非恒定节点含有变时滞复杂网络的同步问题.利用Lyapunov函数理论,设计有效的控制函数并获得一些简单的同步准则,使得属于不同簇的复杂网络能同步到任意光滑的状态.最后给以一数值仿真的例子验证了该理论的有效性.  相似文献   

4.
In this paper, a simple adaptive feedback control is proposed for full and reduced-order synchronization of time-varying and strictly uncertain chaotic systems. Our method uses only one feedback gain with parameter adaptation law and converges very fast even in the presence of noise. For full synchronization, a drive-response system consisting of two second-order identical parametrically excited oscillators achieve global synchronization; while for reduced-order synchronization, the dynamical evolution of a second-order parametrically driven oscillator is synchronized with the projection of a third-order time-varying chaotic system. The effectiveness of our approach is demonstrated using numerical simulations.  相似文献   

5.
This paper investigates the problem of function projective synchronization (FPS) in drive-response dynamical networks (DRDNs) with non-identical nodes. Based on the adaptive open-plus-closed-loop (AOPCL) method, a general method of function projective synchronization is derived, which is robust to limited accuracy of data and effects of noise. Corresponding numerical simulations on the Lorenz system are performed to verify and illustrate the analytical results.  相似文献   

6.
Generalized function projective (lag, anticipated and complete) synchronization between two different complex networks with nonidentical nodes is investigated in this paper. Based on Barbalat’s lemma, some sufficient synchronization criteria are derived by applying the nonlinear feedback control. Although previous work studied function projective synchronization on complex dynamical networks, the dynamics of the nodes are coupled partially linear chaotic systems. In our work, the dynamics of the nodes of the complex networks are any chaotic systems without the limitation of the partial linearity. In addition, each network can be undirected or directed, connected or disconnected, and nodes in either network may have identical or different dynamics. The proposed strategy is applicable to almost all kinds of complex networks. Numerical simulations further verify the effectiveness and feasibility of the proposed synchronization method. Numeric evidence shows that the synchronization rate is sensitively influenced by the feedback strength, the time delay, the network size and the network topological structure.  相似文献   

7.
Synchronization between spatially distributed nodes of a power-grid is a crucial requirement for its proper operation. Using a Kuramoto-like network as a realistic physical model for the distribution of electrical power in a power-grid, we obtain coupling strengths and topological characteristics that favor the synchronous state of those technological networks. Power-grids are highly heterogeneous. They are composed of different classes of nodes and each node behaves differently. We show in this work that if a power-grid is extensive and nodes are highly connected, the coupling strength that leads to synchronization depends mainly on the eigenvalues of the Laplacian matrix, as it happens in homogeneous networks composed of equal nodes. On the other hand, if a power-grid is sparsely connected, the coupling strength that leads to synchronization is also strongly related to the correlation coefficient of the network, which means that a high number of connections between similar nodes (two power plants or two consumer centers) disfavor the synchronizability of the power-grid. We apply our results to the Brazilian power-grid system.  相似文献   

8.
In this paper, generalized synchronization (GS) between two coupled complex networks is theoretically and numerically studied, where the node vectors in different networks are not the same, and the numbers of nodes of both networks are not necessarily equal. First, a sufficient criterion for GS, one kind of outer synchronizations, of two coupled networks is established based on the auxiliary system method and the Lyapunov stability theory. Numerical examples are also included which coincide with the theoretical analysis.  相似文献   

9.
In this article, we consider a generalized complex dynamical network model with nonsymmetric coupling, and the dynamics of each node has a different time-varying delay. Criteria of exponential synchronization are derived in terms of linear matrix inequalities for the model by constructing suitable Lyapunov functionals. The obtained outcomes are different from those in the current literature, in which the complex dynamical networks are coupling symmetrically and delays are fixed constants. Moreover, the given sufficient conditions extend current available results and are verifiable. A numerical example is provided to illustrate the efficiency of the derived outcome.  相似文献   

10.
In this paper, two kinds of synchronization problems of complex dynamical networks with multiple time-varying delays are investigated, that is, the cases with fixed topology and with switching topology. For the former, different from the commonly used linear matrix inequality (LMI) method, we adopt the approach basing on the scramblingness property of the network’s weighted adjacency matrix. The obtained result implies that the network will achieve exponential synchronization for appropriate communication delays if the network’s weighted adjacency matrix is of scrambling property and the coupling strength is large enough. Note that, our synchronization condition is very new, which would be easy to check in comparison with those previously reported LMIs. Moreover, we extend the result to the case when the interaction topology is switching. The maximal allowable upper bounds of communication delays are obtained in each case. Numerical simulations are given to demonstrate the effectiveness of the theoretical results.  相似文献   

11.
The synchronization problem of some general complex dynamical networks with time-varying delays is investigated. Both time-varying delays in the network couplings and time-varying delays in the dynamical nodes are considered. The delays considered in this paper are assumed to vary in an interval, where the lower and upper bounds are known. Based on a piecewise analysis method, the variation interval of the time delay is firstly divided into several subintervals, by checking the variation of the derivative of a Lyapunov function in every subinterval, then the convexity of matrix function method and the free weighting matrix method are fully used in this paper. Some new delay-dependent synchronization stability criteria are derived in the form of linear matrix inequalities. Two numerical examples show that our method can lead to much less conservative results than those in the existing references.  相似文献   

12.
In this paper, the global exponential synchronization is investigated for an array of asymmetric neural networks with time-varying delays and nonlinear coupling, assuming neither the differentiability for time-varying delays nor the symmetry for the inner coupling matrices. By employing a new Lyapunov-Krasovskii functional, applying the theory of Kronecker product of matrices and the technique of linear matrix inequality (LMI), a delay-dependent sufficient condition in LMIs form for checking global exponential synchronization is obtained. The proposed result generalizes and improves the earlier publications. An example with chaotic nodes is given to show the effectiveness of the obtained result.  相似文献   

13.
本文研究了带非线性信号连接的两个复杂网络间的同步问题,引入非线性耦合参数α来调节两个复杂网络的同步.若耦合参数不能保证网络达到外部同步,这里我们提出了一种自适应同步方式,通过此方式可以使两个复杂网络达到同步,最后通过简单的数值算例来阐述得到的理论结果,包括网络具有相同和不相同的拓扑结构两种情形.  相似文献   

14.
This paper presents a general model of singular complex switched networks, in which the nodes can be singular dynamic systems and switching behaviors act on both nodes and edges. The parametric uncertainties and unknown coupling topologies are also considered in this model. Two robust synchronization schemes are discussed respectively. In one scheme, the network is synchronized to a homogeneous orbit and in the other one the network is synchronized to a weighted average of all the nodes. Based on the Lyapunov stability theory, different robust synchronization conditions for the two schemes are obtained for this singular complex switched network model via impulsive control. The similarities and differences between these synchronization conditions for the two schemes are discussed. In addition, three useful robust results for the special cases of the singular complex switched networks are presented. Two systematic-design procedures are presented for the two schemes, and three numerical examples are provided for illustrations.  相似文献   

15.
In the real world, many networks show community structure, i.e., clusters of nodes, which have a high density of links within the same cluster but a lower density of links between different clusters. In this paper, nonlinearly coupled networks with community structure and non-identical nodes and with time-varying delay are considered. By applying pinning control to a fraction of network nodes, and using a suitable Lyapunov function, we obtain some new and useful synchronization criteria, which guarantee that various clusters are synchronized independently. An example is presented to show the application of the criteria obtained in this paper.  相似文献   

16.
This paper investigates drive-response synchronization of chaotic systems with discontinuous right-hand side. Firstly, a general model is proposed to describe most of known discontinuous chaotic system with or without time-varying delay. An uniform impulsive controller with multiple unknown time-varying delays is designed such that the response system can be globally exponentially synchronized with the drive system. By utilizing a new lemma on impulsive differential inequality and the Lyapunov functional method, several synchronization criteria are obtained through rigorous mathematical proofs. Results of this paper are universal and can be applied to continuous chaotic systems. Moreover, numerical examples including discontinuous chaotic Chen system, memristor-based Chua’s circuit, and neural networks with discontinuous activations are given to verify the effectiveness of the theoretical results. Application of the obtained results to secure communication is also demonstrated in this paper.  相似文献   

17.
This paper studies the pinning impulsive synchronization problem for a class of complex dynamical networks with time-varying delay. By applying the Lyapunov stability theory and mathematical analysis technique, sufficient verifiable criterion for the synchronization of delayed complex dynamical networks with small delay is derived analytically. It is shown that synchronization can be achieved by only impulsively controlling a small fraction of network nodes. Moreover, a novel sufficient condition is constructed to relax the restrictions on the size of time-delay and guarantee the synchronization of concerned networks with large delay. Two numerical examples are presented to illustrate the effectiveness of the obtained results.  相似文献   

18.
We present an approach to the chaos synchronization of complex networks with distinct nodes. The chaotic synchronization is achieved by adding a derivative coupling term in the network equation. We assume that node in networks are different and are given by the Lorenz, Rössler, Chen and Sprott chaotic systems. The derivative term is capable to induce the synchronous behavior in the network. Moreover such a coupling leads the global behavior to a chaotic attractor. We found that without derivative coupling the network is leaded only to an equilibrium point or a limit cycle. Numerical simulations are provided to illustrate the result. Complementary the network synchrony can be chaotic in presence of the derivative coupling.  相似文献   

19.
In this paper, complex networks with community structure and nonidentical nodes are investigated. The cluster mixed synchronization of these networks is studied by using some linear pinning control schemes. Only the nodes in one community which have direct connections to the nodes in other communities are controlled. Adaptive coupling strength method is adopted to achieve the synchronization as well. According to Lyapunov stability theory, several sufficient conditions for the network to achieve cluster mixed synchronization are derived. Numerical simulations are provided to verify the correctness and the effectiveness of the theoretical results.  相似文献   

20.
本文研究了两个离散网络之间的广义同步,其中每个网络的节点动力学是不同的,节点数目也没有要求是相等的.通过使用辅助系统方法,我们给出了基于李雅普诺夫稳定性理论的广义同步定理.最后,用数值例子来验证定理的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号