首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Nonlinear processes accompanying the focusing of a microsecond acoustic pulse produced by an electromagnetic source shaped as a spherical segment are investigated. The processes are considered to be far from the boundaries of a liquid, in the absence of cavitation. Detailed measurements of the pressure field by a fiber-optic sensor and high-speed photography of the shock front are performed. The pressure field is found to be determined by the nonlinear effects that occur in the course of the propagation of the initial converging compression wave and an edge rarefaction wave. The peak pressure amplitudes at the focus are 75 and ?42 MPa for the compression and rarefaction waves, respectively, at the maximum voltage of the pulse generator in use. The measured length of the compression wave front is equal to the response time of the sensor (8 ns). The pressure amplitude is shown to be limited by the irregularity of the propagation of a shock wave in the form of Mach’s disk. At the focus, the pressure gradient across the radiator axis reaches 0.5 atm/μm, while the diameter of the focal spot is 2.5±0.2 mm. The focus of the edge rarefaction wave formed due to diffraction is located closer to the radiator than the focus of the compression wave, which may facilitate the study of the biological effect of cavitation independently of the shear motion of the medium.  相似文献   

2.
王峰  彭晓世  刘慎业  李永升  蒋小华  丁永坤 《物理学报》2011,60(2):25202-025202
针对超高压下透明材料的高压离化机理,分析了透明材料中冲击波直接诊断技术的基本方法. 利用Drude-自由电子气模型,分析了不同冲击压力下冲击波阵面反射率的变化. 从理论上比较了不同探针光波长反射率的区别,发现探针光波长为660 nm时比探针光波长为532 nm时获得的冲击波阵面反射率要高. 对探测器"致盲"问题也进行了研究. 通过分析反射信号的时间顺序和强度大小,发现"致盲"效应是由X光对透明窗口离化引起的. 同时,发现方波驱动脉冲平台的前沿到达时刻和X光离化效应出现的时刻相同,冲击波信号到达时刻晚于X光离化时刻. 通过实验结果,得到蓝宝石中冲击波速度为35 km/s时,其波阵面的反射率约为40%. 通过理论分析和实验数据比对的方法,验证了蓝宝石中的减速曲线. 给出了加蓝宝石窗口后的测速公式. 经过和实验对比,确认了测速公式的正确性. 关键词: 冲击波 光学诊断 成像 干涉仪  相似文献   

3.
A method of generating in situ shock wave-inertial microbubble interaction by a modified electrohydraulic shock wave lithotripter is proposed and tested in vitro. An annular brass ellipsoidal reflector (thickness = 28 mm) that can be mounted on the aperture rim of a Dornier XL-1 lithotripter was designed and fabricated. This ring reflector shares the same foci with the XL-1 reflector, but is 15 mm short in major axis. Thus, a small portion of the spherical shock wave, generated by a spark discharge at the first focus (F1) of the reflector, is reflected and diffracted by the ring reflector, producing a weak shock wave approximately 8.5 microseconds in front of the lithotripter pulse. Based on the configuration of the ring reflector (different combinations of six identical segments), the peak negative pressure of the preceding weak shock wave at the second focus (F2) can be adjusted from -0.96 to -1.91 MPa, at an output voltage of 25 kV. The preceding shock wave induces inertial microbubbles, most of which expand to a maximum size of 100-200 microns, with a few expanding up to 400 microns before being collapsed in situ by the ensuing lithotripter pulse. Physical characterizations utilizing polyvinylidene difluoride (PVDF) membrane hydrophone, high-speed shadowgraph imaging, and passive cavitation detection have shown strong secondary shock wave emission immediately following the propagating lithotripter shock front, and microjet formation along the wave propagation direction. Using the modified reflector, injury to mouse lymphoid cells is significantly increased at high exposure (up to 50% with shock number > 100). With optimal pulse combination, the maximum efficiency of shock wave-induced membrane permeabilization can be enhanced substantially (up to 91%), achieved at a low exposure of 50 shocks. These results suggest that shock wave-inertial microbubble interaction may be used selectively to either enhance the efficiency of shock wave-mediated macromolecule delivery at low exposure or tissue destruction at high exposure.  相似文献   

4.
The behavior of point defects (interstitial atoms and vacancies) is examined in the front of a plane shock wave. The wave is modeled by a soliton pulse. It is shown that in high-pressure shock waves with a narrow loading wave front an unactivated motion of the point defects is possible, and for a pressure Po 50 GPa and xo 10–8 m, a dragging of the interstitial atoms by the front of the shock wave can be observed. The vacancies are displaced in the field of the shock pulse in the opposite direction to the motion of the pulse. Here the mobility of the vacancies is significantly lower than that of the interstitial atoms.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 49–52, June, 1985.  相似文献   

5.
The flame acceleration and the physical mechanism underlying the deflagration-to-detonation transition (DDT) have been studied experimentally, theoretically, and using a two-dimensional gasdynamic model for a hydrogen-oxygen gas mixture by taking into account the chain chemical reaction kinetics for eight components. A flame accelerating in a tube is shown to generate shock waves that are formed directly at the flame front just before DDT occurred, producing a layer of compressed gas adjacent to the flame front. A mixture with a density higher than that of the initial gas enters the flame front, is heated, and enters into reaction. As a result, a high-amplitude pressure peak is formed at the flame front. An increase in pressure and density at the leading edge of the flame front accelerates the chemical reaction, causing amplification of the compression wave and an exponentially rapid growth of the pressure peak, which “drags” the flame behind. A high-amplitude compression wave produces a strong shock immediately ahead of the reaction zone, generating a detonation wave. The theory and numerical simulations of the flame acceleration and the new physical mechanism of DDT are in complete agreement with the experimentally observed flame acceleration, shock formation, and DDT in a hydrogen-oxygen gas mixture.  相似文献   

6.
The focusing of laser-generated shock waves by a truncated ellipsoidal reflector was experimentally and numerically investigated. Pressure waveform and distribution around the first (F(1)) and second foci (F(2)) of the ellipsoidal reflector were measured. A neodymium doped yttrium aluminum garnet laser of 1046 nm wavelength and 5 ns pulse duration was used to create an optical breakdown at F(1), which generates a spherically diverging shock wave with a peak pressure of 2.1-5.9 MPa at 1.1 mm stand-off distance and a pulse width at half maximum of 36-65 ns. Upon reflection, a converging shock wave is produced which, upon arriving at F(2), has a leading compressive wave with a peak pressure of 26 MPa and a zero-crossing pulse duration of 0.1 mus, followed by a trailing tensile wave of -3.3 MPa peak pressure and 0.2 mus pulse duration. The -6 dB beam size of the focused shock wave field is 1.6 x 0.2 mm(2) along and transverse to the shock wave propagation direction. Formation of elongated plasmas at high laser energy levels limits the increase in the peak pressure at F(2). General features in the waveform profile of the converging shock wave are in qualitative agreement with numerical simulations based on the Hamilton model.  相似文献   

7.
The entry of a shock wave from air into water containing reactive gas (stoichiometric acetylene–oxygen mixture) bubbles uniformly distributed over the volume of the liquid has been numerically investigated using equations describing two-phase compressible viscous reactive flow. It has been demonstrated that a steady-state supersonic self-sustaining reaction front with rapid and complete fuel burnout in the leading shock wave can propagate in this bubbly medium. This reaction front can be treated as a detonation-like front or “bubble detonation.” The calculated and measured velocities of the bubble detonation wave have been compared at initial gas volume fraction of 2 to 6%. The observed and calculated data are in satisfactory qualitative and quantitative agreement. The structure of the bubble detonation wave has been numerically studied. In this wave, the gas volume fraction behind the leading front is approximately 3–4 times higher than in the pressure wave that propagates in water with air bubbles when the other initial conditions are the same. The bubble detonation wave can form after the penetration of the shock wave to a small depth (~300 mm) into the column of the bubbly medium. The model suggested here can be used to find optimum conditions for maximizing the efficiency of momentum transfer from the pressure wave to the bubbly medium in promising hydrojet pulse detonation engines.  相似文献   

8.
A study is made of the penetration of shock waves from air into water. The shock wave in air is generated as a result of dielectric breakdown induced by pulsed CO2-laser radiation. A combination of the double-exposure shadow method and holographic interferometry is used to measure the shock-wave parameters. Density and pressure profiles behind the wave front are obtained at different times after onset of breakdown. It is shown experimentally that as the wave passes through the interface from the air to the water, there is a fourfold amplification of the pressure in the shock wave front. Estimates of the width of the shock wave front formed in the water are given in the context of studies of large-scale explosion processes. It is shown that simple empirical dependences, established in the course of studies of large-scale explosions, are also valid with certain corrections for microscopic laboratory experiments. Zh. Tekh. Fiz. 68, 39–43 (August 1998)  相似文献   

9.
 用分子动力学方法模拟计算了在初始温度为0 K时单晶铜中的冲击波结构,相互作用势采用铜的嵌入原子势(EAM),模拟计算结果表明即使是在初始温度为0 K的FCC晶体中,冲击波波阵面后的区域也会向平衡态演化。局域分析表明冲击波阵面后区域的压力、粒子速度、应变和温度随时间逐步变化到稳定态,在所研究的冲击波强度(约262 GPa)下,波后区域的平均压力、粒子速度、应变均在约1 ps内逐渐上升并达到稳定值。动能温度在波阵面处始终为最大值,随着冲击波的传播,波后非零温度区域逐渐扩大,不同时刻的粒子速度分布函数说明波后区域逐渐向热力学平衡态演化,并最终达到热力学平衡,进一步的分析说明局域平衡是系统向平衡态演化的基本过程。  相似文献   

10.
The results of the theoretical analysis and computer simulation of the behavior of neutrally stable shock waves with real (van der Waals gas, magnesium) equations of state are presented. An approach is developed in which the region of the neutral stability of a shock wave for each pressure value in front of the wave is determined from the analysis of the equation of state. A simple algorithm is developed to determine the cause of acoustic perturbations (a shock front or an external source) immediately from the flow pattern. In contrast to the predictions of the linear theory, the amplitude of the perturbations of the neutrally stable shock wave decreases with time, although this process is noticeably slower than in the case of an absolutely stable shock wave.  相似文献   

11.
We use multimillion-atom molecular dynamics simulations to study shock wave propagation in fcc crystals. As shown recently, shock waves along the <100> direction form intersecting stacking faults by slippage along 111 close-packed planes at sufficiently high shock strengths. We find even more interesting behavior of shocks propagating in other low-index directions: for the <111> case, an elastic precursor separates the shock front from the slipped (plastic) region. Shock waves along the <110> direction generate a leading solitary wave train, followed (at sufficiently high shock speeds) by an elastic precursor, and then a region of complex plastic deformation.  相似文献   

12.
The interaction of a lithotripter shock wave (LSW) with laser-generated single vapor bubbles in water is investigated using high-speed photography and pressure measurement via a fiber-optic probe hydrophone. The interaction leads to nonspherical collapse of the bubble with secondary shock wave emission and microjet formation along the LSW propagation direction. The maximum pressure amplification is produced during the collapse phase of the bubble oscillation when the compressive pulse duration of the LSW matches with the forced collapse time of the bubble.  相似文献   

13.
A simple method to calculate the parameters of a shock wave in a space between the shock wave front and the Chapman-Jouguet plane is considered. Solving a velocity equation, one can calculate the pressure, density, and temperature of the gas, as well as determine the size of a detonation region in a one-dimensional approximation. The dependences of the detonation region size on input parameters are derived. From these dependences, one can estimate the run of the same curves in the real situation.  相似文献   

14.
在高重复频率激光推进的研究中,激波的合并是发生在激波演化后期的,同时由于脉冲间隔短,脉冲宽度对流场演化的影响也需要详细研究。考虑了激光辐照过程对流场演化的影响,通过数值计算对激波演化特性进行了研究。结果表明,初期波阵面的椭球形状逐渐转化为一个球形,球心与击穿点的距离随时间逐渐减小并最终趋于稳定。基于激波合并的应用,当激波马赫数在1~2之间时,给出了激波波阵面半径随时间的变化规律,以及激波高压区长度和波峰压强随激波波阵面半径变化规律的经验公式。  相似文献   

15.
冲击作用下金属表面微喷射的分子动力学模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
陈军  经福谦  张景琳  陈栋泉 《物理学报》2002,51(10):2386-2392
利用二维分子动力学程序,结合类紧束缚杂化多体势,研究冲击载荷下金属表面包含沟槽型缺陷的微喷射动力学过程.在产生微喷射以后,结果表明材料内部传播着两种波系:反射稀疏波和二次加载压缩波,其中,反射稀疏波波面与沟槽形状相似,而二次压缩波波面随沟槽夹角的变化而变化;并形成了两个压强区:负压区和正压区,负压区的存在表明材料中可能产生微损伤.同时,统计结果表明微喷射体的速度随沟槽半角增加而增加的趋势,微喷射体的粒子数随沟槽半角增大而减少的趋势,当沟槽半角大于60°,微喷射效应消失.以上计算结果可以定性说明射流是沟槽型 关键词: 冲击波 沟槽型缺陷 微喷射 分子动力学  相似文献   

16.
An unusually high mobility of atoms under intensive impulse reactions is explained by the behavior of point defects at the shock wave front. It is shown that either a shock wave front or moving dislocations can capture the interstitials, or they can be thermally activated in the direction of the shock wave propagation.  相似文献   

17.
The possibility of extending the second-harmonic beam (SHB) method proposed originally for picosecond and subpicosecond pulse-duration measurements to the femtosecond region is pointed out. This can be achieved by introducing a differential time delay of the pulse wave front corresponding to a tilting of the pulse in the direction other than that applied by Wyatt and Marinero, and also by Saltiel et al., who achieved extensions towards the subnanosecond region. The solution of the wave equations for noncollinear second-harmonic generation in the case of arbitrarily tilted pulses has been carried out. Simple formulae valid from the subnanosecond to the femtosecond region are presented.  相似文献   

18.
Using an ionization sensor, it was found that weakly ionized plasma with an ionization degree larger than 10?6 is formed under exposure to UV radiation of a high-current pulsed electric discharge in gas (air, nitrogen, xenon, and krypton) at atmospheric pressure at a distance of ~1.2–2.5 cm from the discharge boundary. It was shown that the structure of such discharge includes, in addition to the discharge channel, a dense shell and a shock wave, also a region of weakly ionized and excited gas before the shock wave front. The mechanism of discharge expansion in dense gas is ionization and heating of gas involved in the discharge due to absorption of the UV energy flux from the discharge channel and the flux of the thermal energy transferred from the discharge channel to the discharge shell due to electron thermal conductivity.  相似文献   

19.
Acoustic fields of powerful ultrasound sources with Gaussian spatial apodization and initial excitation in the form of a periodic wave or single pulse are examined based on the numerical solution of the Khokhlov-Zabolotskaya-Kuznetsov equation. The influence of nonlinear effects on the spatial structure of focused beams, as well as on the limiting values of the acoustic field parameters is compared. It is demonstrated that pressure saturation in periodic fields is mainly due to the effect of nonlinear absorption at a shock front, while in pulsed fields is due to the effect of nonlinear refraction. The limiting attainable values for the peak positive pressure in periodic fields turned out to be higher than the analogous values in pulsed acoustic fields. The total energy in a beam of periodic waves decreases with the distance from the source faster than in the case of a pulsed field, but it becomes concentrated within much smaller spatial region in the vicinity of the focus. These special features of nonlinear effect manifestation provide an opportunity to use pulsed beams for more efficient delivery of wave energy to the focus and to use periodic beams for attaining higher values of pressure in the focal region.  相似文献   

20.
冲击波影响下的聚能射流侵彻扩孔方程   总被引:1,自引:0,他引:1       下载免费PDF全文
 当聚能射流侵彻速度大于靶板声速时,由于冲击波的产生导致波阵面后材料的状态参数发生改变,影响聚能射流的侵彻扩孔过程,致使波阵面前后不能直接应用伯努利方程求解。在考虑侵彻过程中冲击波影响的基础上,对射流轴向侵彻和径向扩孔的力学特性进行了分析,并对冲击波的传播和衰减进行了假设,着重探讨侵彻速度大于靶板声速时冲击波的影响。针对侵彻速度大于和小于靶板声速两种情况,建立了相应的侵彻模型,提出了一个新的聚能射流侵彻扩孔方程。将该方程与Szendrei-Held模型进行了比较,结果表明,新模型更符合Held等人的实验数据,冲击波对轴向侵彻的影响远小于对径向扩孔的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号