首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A facile, one-step reduction route was developed to synthesize Pd-rich carbon-supported Pd–Pt alloy electrocatalysts of different Pd/Pt atomic ratios. As-prepared Pd–Pt/C catalysts exhibit a single phase fcc structure and an expansion lattice parameter. Comparison of the oxygen reduction reaction (ORR) on the Pd–Pt/C alloy catalysts indicates that the Pd3Pt1/C bimetallic catalyst exhibits the highest ORR activity among all the Pd–Pt alloy catalysts and shows a comparative ORR activity with the commercial Pt/C catalyst. Moreover, all the Pd–Pt alloy catalysts exhibited much higher methanol tolerance during the ORR than the commercial Pt/C catalyst. High methanol tolerance of the Pd–Pt alloy catalysts could be attributed to the weak adsorption of methanol induced by the composition effect, to the presence of Pd atoms and to the formation of Pd-based alloys.  相似文献   

2.
We synthesized a new class of O2 electrocatalysts with a high activity and very low noble metal content. They consist of Pt monolayers deposited on the surfaces of carbon-supported nonnoble metal-noble metal core-shell nanoparticles. These core-shell nanoparticles were formed by segregating the atoms of the noble metal on to the nanoparticles' surfaces at elevated temperatures. A Pt monolayer was deposited by galvanic displacement of a Cu monolayer deposited at underpotentials. The mass activity of all the three Pt monolayer electrocatalysts investigated, viz., Pt/Au/Ni, Pt/Pd/Co, and Pt/Pt/Co, is more than order of magnitude higher than that of a state-of-the-art commercial Pt/C electrocatalyst. Geometric effects in the Pt monolayer and the effects of PtOH coverage, revealed by electrochemical data, X-ray diffraction, and X-ray absorption spectroscopy data, appear to be the source of the enhanced catalytic activity. Our results demonstrated that high-activity electrocatalysts can be devised that contain only a fractional amount of Pt and a very small amount of another noble metal.  相似文献   

3.
Carbon supported PdCo catalysts in varying atomic ratios of Pd to Co, namely 1 : 1, 2 : 1 and 3 : 1, were prepared. The oxygen reduction reaction (ORR) was studied on commercial carbon-supported Pd and carbon-supported PdCo nanocatalysts in aqueous 0.1 M KOH solution with and without methanol. The structure, dispersion, electrochemical characterization and surface area of PdCo/C were determined by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and Cyclic Voltammetry (CV), respectively. The electrochemical activity for ORR was evaluated from Linear Sweep Voltammograms (LSV) obtained using a rotating ring disk electrode. The catalysts were evaluated for their electrocatalytic activity towards oxygen reduction reaction (ORR) in Alkaline Polymer Electrolyte Membrane Fuel Cells (APEMFCs). PdCo(3 : 1)/C gives higher performance (85 mW cm(-2)) than PdCo(1 : 1)/C, PdCo(2 : 1)/C and Pd/C. The maximum electrocatalytic activity for ORR in the presence of methanol was observed for PdCo(3 : 1)/C. First principles calculations within the framework of density functional theory were performed to understand the origin of its catalytic activity based on the energy of adsorption of an O(2) molecule on the cluster, structural variation and charge transfer mechanism.  相似文献   

4.
Pt–Pd/MWCNT with Pt:Pd atomic ratio 40:60 and Pt/MWCNT electrocatalyst were synthesized and evaluated as oxygen reduction reaction (ORR) cathodes for Direct Ethylene Glycol Fuel Cells (DEGFC) applications. As reference, a commercial Pt/C material was also tested. We found that Pt–Pd/MWCNT has high tolerance capability to EG and higher selectivity for the ORR compared to the Pt-alone materials. As a result, the shift in onset potential for the ORR, Eonset, at Pt–Pd/MWCNT was considerably smaller than the shift at Pt/MWCNT or Pt/C. The average particle size (from XRD) was 3.5 and 4 nm for Pt/MWCNT and Pt–Pd/MWCNT, respectively. A moderate degree of alloying was determined for the Pt–Pd material. An advantageous application of Pt–Pd electrocatalysts should be in DEGFCs.  相似文献   

5.
The data on the cathodic PdCo/C catalyst prepared by high-temperature synthesis from 20 wt % Pd/C (E-TEK) are shown. According to XRD data, the catalyst represents an alloy with the preferential composition of Pd2Co. The kinetics and mechanism of oxygen reduction on the PdCo/C catalyst are studied by the methods of rotating disk electrode, rotating ring-disk electrode, and electrochemical impedance. It is shown that oxygen is reduced preferentially to water (k 1) but in the potential range more negative than 0.6 V, the ratio of constants k 1/k 2 decreases, which suggests that the contribution of the reaction that proceeds through the formation of H2O2 (k 2) increases. The activity of PdCo/C catalyst under model conditions in 0.5 M H2SO4 was assessed to be 15 mA/mgcat at a potential of 0.7 V.  相似文献   

6.
This work reviews the studies conducted in this laboratory of the oxygen reduction reaction (ORR) on electrocatalysts formed by Pt-M/C (M = V, Cr, Co) and Ag-Pt/C alloys and on different Mn oxides (MnO/C, Mn3O4/C, MnO2/C) in KOH electrolyte. The physical and electronic properties of the materials are investigated by in situ XAS (x-ray absorption spectroscopy) in the XANES (x-ray absorption near edge structure) region. The electrocatalytic activity for the ORR on the different catalysts is compared through mass-transport-corrected Tafel plots. The XANES results for the Pt-M/C and Ag-Pt/C composites at high electrode potentials show lower vacancy of the Pt 5d band compared to pure Pt/C, while for the results indicate a chance of the Mn oxidation state as a function of the electrode potential. The electrochemical measurements evidence increased electrocatalytic activity of the Pt alloys compared to pure Pt and this is attributed to a lowering of the adsorption strength of adsorbed oxygen species caused by the reduced Pt reactivity. An activity enhancement of the Ag atoms on the Ag-Pt/C alloys compared to pure Ag is ascribed to an electronic effect induced by the presence of Pt, increasing the Ag-O adsorption strength. In the case of the MnyOx/C materials, the electrochemical results show low activity for MnO/C and higher activity for MnO2/C and Mn3O4/C. This is explained based on the activation for the ORR, which is higher for the material with higher MnO2 contents and the occurrence of a mediation processes involving the reduction of Mn(IV) to Mn(III), followed by the electron transfer of Mn(III) to oxygen. Published in Russian in Elektrokhimiya, 2006, Vol. 42, No. 12, pp. 1417–1426. Based on the report delivered at the 8th International Frumkin Symposium “Kinetics of the Electrode Processes,” October 18–22, 2005, Moscow. The text was submitted by the authors in English.  相似文献   

7.
本文利用欠电位沉积亚单层的Cu及Pt置换取代Cu的方法, 制备了具有不同表面元素组成的Pd/Pt二元合金电极(用Pd/Ptx表示, x指欠电位沉积Cu-Pt置换取代Cu过程的次数),并对其表面元素组成、氧还原性能进行了表征. 在控制欠电位沉积Cu的下限电位恒定(0.34 V)的前提下, 表面Pt/Pd的元素组成比通过重复欠电位沉积Cu及Pt置换取代Cu的次数(1~5次)来可控地调变. 光电子能谱(XPS) 以及红外光谱实验表明,Pd/Ptx电极表层区的Pt:Pd元素组成比随着Pt沉积次数增加而增加, 对Pd/Pt4电极, 在电极表层区约2~3 nm内的Pt/Pd的原子比大约是1:4,而最表层裸露Pd原子的比例仍在20%以上。循环伏安结果显示, 随着Pt沉积次数的增加(1-5次), Pd/Ptx电极表面越不易被氧化。氧还原测试结果显示随着Pt沉积次数的增加(1~4次), Pd/Ptx二元金属电极的氧还原活性依次增加, 经过第3次沉积后其氧还原活性已优于纯Pt,而经4次以上沉积,其氧还原活性基本不变。在其它反应条件相同条件的前提下, Pd/Pt4电极上氧还原的半波电位与纯Pt相比右移约25 mV。结合本文与文献的实验结果,我们初步认为Pd/Ptx二元金属体系氧还原性能改善主要源自表层Pd原子导致其邻近的Pt原子上含氧物种吸附能的降低.  相似文献   

8.
Metallic palladium (Pd) electrocatalysts for oxygen reduction and hydrogen peroxide (H2O2) oxidation/reduction are prepared via electroplating on a gold metal substrate from dilute (5 to 50 mM) aqueous K2PdCl4 solution. The best Pd catalyst layer possessing dendritic nanostructures is formed on the Au substrate surface from 50 mM Pd precursor solution (denoted as Pd‐50) without any additional salt, acid or Pd templating chemical species. The Pd‐50 consisted of nanostructured dendrites of polycrystalline Pd metal and micropores within the dendrites which provide high catalyst surface area and further facilitate reactant mass transport to the catalyst surface. The electrocatalytic activity of Pd‐50 proved to be better than that of a commercial Pt (Pt/C) in terms of lower overpotential for the onset and half‐wave potentials and a greater number of electrons (n) transferred. Furthermore, amperometric it curves of Pd‐50 for H2O2 electrochemical reaction show high sensitivities (822.2 and ?851.9 µA mM?1 cm?2) and low detection limits (1.1 and 7.91 µM) based on H2O2 oxidation H2O2 reduction, respectively, along with a fast response (<1 s).  相似文献   

9.
PdCo nanotube arrays (NTAs) supported on carbon fiber cloth (CFC) (PdCo NTAs/CFC) are presented as high‐performance flexible electrocatalysts for ethanol oxidation. The fabricated flexible PdCo NTAs/CFC exhibits significantly improved electrocatalytic activity and durability compared with Pd NTAs/CFC and commercial Pd/C catalysts. Most importantly, the PdCo NTAs/CFC shows excellent flexibility and the high electrocatalytic performance remains almost constant under the different distorted states, such as normal, bending, and twisting states. This work shows the first example of Pd‐based alloy NTAs supported on CFC as high‐performance flexible electrocatalysts for ethanol oxidation.  相似文献   

10.
The direct methanol fuel cell (DMFC) is considered as a promising power source, because of its abundant fuel source, high energy density and environmental friendliness. Among DMFC anode materials, Pt and Pt group metals are considered to be the best electrocatalysts. The combination of Pt with some specific transition metal can reduce the cost and improve the tolerance toward CO poisoning of pure Pt catalysts. In this paper, the geometric stabilities of PtFe/PdFe atoms anchored in graphene sheet and catalytic CO oxidation properties were investigated using the density functional theory method. The results show that the Pt (Pd) and Fe atoms can replace C atoms in graphene sheet. The CO oxidation reaction by molecular O2 on PtFe–graphene and PdFe–graphene was studied. The results show that the Eley–Rideal (ER) mechanism is expected over the Langmuir–Hinshelwood mechanism for CO oxidation on both PtFe–graphene and PdFe–graphene. Further, complete CO oxidation on PtFe–graphene and PdFe–graphene proceeds via a two‐step ER reaction: CO(gas) + O2(ads) → CO2(ads) + O(ads) and CO(gas) + O(ads) → CO2(ads). Our results reveal that PtFe/PdFe commonly embedded in graphene can be used as a catalyst for CO oxidation. The microscopic mechanism of the CO oxidation reaction on the atomic catalysts was explored.  相似文献   

11.
A nanoporous (NP) PdCo alloy with uniform structure size and controllable bimetallic ratio was fabricated simply by one‐step mild dealloying of a PdCoAl precursor alloy. The as‐made alloy consists of a nanoscaled bicontinuous network skeleton with interconnected hollow channels that extend in all three dimensions. With a narrow ligament size distribution around 5 nm, the NP PdCo alloy exhibits much higher electrocatalytic activity towards the oxygen‐reduction reaction (ORR) with enhanced specific and mass activities relative to NP Pd and commercial Pt/C catalysts. A long‐term stability test demonstrated that NP PdCo has comparable catalytic durability with less loss of ORR activity and electrochemical surface area than Pt/C. The NP PdCo alloy also shows dramatically enhanced catalytic activity towards formic acid electrooxidation relative to NP Pd and Pd/C catalysts. The as‐made NP PdCo holds great application potential as a promising cathode as well as an anode electrocatalyst in fuel cells with the advantages of superior catalytic performance and easy preparation.  相似文献   

12.
We investigated the oxygen-reduction reaction (ORR) on Pd monolayers on various surfaces and on Pd alloys to obtain a substitute for Pt and to elucidate the origin of their activity. The activity of Pd monolayers supported on Ru(0001), Rh(111), Ir(111), Pt(111), and Au(111) increased in the following order: Pd/Ru(0001) < Pd/Ir(111) < Pd/Rh(111) < Pd/Au(111) < Pd/Pt(111). Their activity was correlated with their d-band centers, which were calculated using density functional theory (DFT). We found a volcano-type dependence of activity on the energy of the d-band center of Pd monolayers, with Pd/Pt(111) at the top of the curve. The activity of the non-Pt Pd2Co/C alloy electrocatalyst nanoparticles that we synthesized was comparable to that of commercial Pt-containing catalysts. The kinetics of the ORR on this electrocatalyst predominantly involves a four-electron step reduction with the first electron transfer being the rate-determining step. The downshift of the d-band center of the Pd "skin", which constitutes the alloy surface due to the strong surface segregation of Pd at elevated temperatures, determined its high ORR activity. Additionally, it showed very high methanol tolerance, retaining very high catalytic activity for the ORR at high concentrations of methanol. Provided its stability is satisfactory, this catalyst might possibly replace Pt in fuel-cell cathodes, especially those of direct methanol oxidation fuel cells (DMFCs).  相似文献   

13.

Carbon-supported oxide-rich Pd–W bimetallic nanoparticles were prepared by chemical reduction methods. The existence of oxides in the electrocatalysts is confirmed by X-ray photoelectron spectrum (XPS) and high resolution transmission electron microscopy. XPS analysis indicates that the oxygen atoms account for about 50% of all the atoms in Pd–W bimetallic nanoparticles. Compared to Pd/C catalyst, the carbon-supported oxide-rich Pd–W bimetallic nanoparticles exhibit a better catalytic activity for the anode oxidation of ethanol in alkaline media. The onset potential of the as prepared oxide-rich Pd0.8W0.2/C catalyst (Pd: W = 8: 2, metal atom ratio) for ethanol oxidation is negative shifted about 90 mV comparing to Pd/C catalyst. The oxide-rich Pd–W/C electrocatalysts provide a new model of noble-metal/promoter system as an extreme case of making the promoter (WO3) closely adjacent to the noble metal (Pd) by fabricating nanoparticles containing both atom-clusters of oxides and the noble metal atoms.

  相似文献   

14.
The catalytic activity and durability are crucial for the development of high-performance electrocatalysts. To design electrocatalysts with excellent electroactivity and durability, the structure and composition are two important guiding principles. In this work, novel Pt/Ni(OH)2–NiOOH/Pd multi-walled hollow nanorod arrays (MHNRAs) are successfully synthesized. The unique MHNRAs provide fast transport and short diffusion paths for electroactive species and high utilization rate of catalysts. Because of the special surface and synergistic effects, the Pt/Ni(OH)2–NiOOH/Pd MHNRA electrocatalysts exhibit high catalytic activity, high durability and superior CO poisoning tolerance for the electrooxidation of formic acid in comparison with Pt@Pd MHNRAs, commercial Pt/C, Pd/C and PtRu/C catalysts.  相似文献   

15.
We synthesized Pt monolayer electrocatalysts for oxygen-reduction using a new method to obtain the supporting core–shell nanoparticles. They consist of a Pt monolayer deposited on carbon-supported Co–Pd core–shell nanoparticles with the diameter of 3–4 nm. The nanoparticles were made using a redox-transmetalation (electroless deposition) method involving the oxidation of Co by Pd cations, yielding a Pd shell around the Co core. The quality of the thus-formed core–shell structure was verified using transmission electron microscopy and X-ray absorption spectroscopy, while cyclic voltammetry was employed to confirm the lack of Co oxidation (dissolution). A Pt monolayer was deposited on the Co–Pd core–shell nanoparticles by the galvanic displacement of a Cu monolayer obtained by underpotential deposition. The total noble metal mass-specific activity of this Pt monolayer electrocatalyst was ca. 3-fold higher than that of commercial Pt/C electrocatalysts.  相似文献   

16.
We have synthesized a new class of electrocatalysts for the O2 reduction reaction, consisting of a mixed monolayer of Pt and another late transition metal (Ir, Ru, Rh, Re, or Os) deposited on a Pd(111) single crystal or on carbon-supported Pd nanoparticles. Several of these mixed monolayer electrocatalysts exhibited very high activity and increased stability of Pt against oxidation, as well as a 20-fold increase in a Pt mass-specific activity, compared with state-of-the-art all-Pt electrocatalysts. Their superior activity and stability reflect a low OH coverage on Pt, caused by the lateral repulsion between the OH adsorbed on Pt and the OH or O adsorbed on neighboring, other than Pt, late transition metal atoms. The origin of this effect was identified through a combination of experimental and theoretical methods, employing electrochemical techniques, in situ X-ray absorption spectroscopy, and periodic, self-consistent density functional theory calculations. This new class of electrocatalysts promises to alleviate some major problems of existing fuel cell technology by simultaneously decreasing materials cost and enhancing performance. Our studies suggest a new way of synthesizing improved ORR catalysts through the modification and control of the surface reactivity of Pt-based mixed monolayers supported on transition metals other than Pt. In addition to improving the ORR catalysts, co-depositing oxophilic metals may be a promising possibility for improving a variety of other catalysts.  相似文献   

17.
The main objective of this paper was to characterize the voltammetric profiles of the Pt/C,Pt/C-ATO,Pd/C and Pd/CATO electrocatalysts and study their catalytic activities for methane oxidation in an acidic electrolyte at 25 ℃ and in a direct methane proton exchange membrane fuel cell at 80 ℃. The electrocatalysts prepared also were characterized by X-ray diffraction( XRD) and transmission electron microscopy( TEM). The diffractograms of the Pt/C and Pt/C-ATO electrocatalysts show four peaks associated with Pt face-centered cubic( fcc) structure,and the diffractograms of Pd/C and Pd/C-ATO show four peaks associated with Pd face-centered cubic( fcc) structure. For Pt/C-ATO and Pd/C-ATO,characteristic peaks of cassiterite( SnO_2) phase are observed,which are associated with Sb-doped SnO_2( ATO) used as supports for electrocatalysts. Cyclic voltammograms( CV) of all electrocatalysts after adsorption of methane show that there is a current increase during the anodic scan. However,this effect is more pronounced for Pt/C-ATO and Pd/C-ATO. This process is related to the oxidation of the adsorbed species through the bifunctional mechanism,where ATO provides oxygenated species for the oxidation of CO or HCO intermediates adsorbed in Pt or Pd sites. From in situ ATR-FTIR( Attenuated Total Reflectance-Fourier Transform Infrared) experiments for all electrocatalysts prepared the formation of HCO or CO intermediates are observed,which indicates the production of carbon dioxide. Polarization curves at 80 ℃in a direct methane fuel cell( DMEFC) show that Pd/C and Pt/C electroacatalysts have superior performance to Pd/C-ATO and Pt/C-ATO in methane oxidation.  相似文献   

18.
Kinetics of oxygen reduction is studied on PdCoPt/C catalysts with different platinum contents in the metal phase. Catalytic systems are synthesized by the high-temperature method. According to XRD analysis, as the contents of metallic Pd and Co in the catalysts increase, the degree of formation of the alloy between them also increase, which however is accompanied by a considerable growth of metal phase particles. To minimize this adverse effect, a method of sequential metal deposition is put forward. This approach makes it possible to considerably decrease the catalyst grain size as compared the single-step deposition for high metal phase contents in the catalytic system. The kinetics of oxygen reduction on the PdCoPt/C catalysts is studied on the rotating disk electrode. Under model conditions (0.5 M H2SO4, 60°C, O2), the 20Pd13Co5Pt/C catalyst exhibited the highest activity per mass unit (0.5 M H2SO4, 60°C, O2), namely, 9 A/gPd + Pt at 0.9 V.  相似文献   

19.
In this work, Pd-Cu alloy nanoparticles (NPs) with different atomic ratios are prepared on functionalized carbon nanotubes (CNTs) and applied as electrocatalysts for formic acid oxidation. The Cu-enriched Pd-Cu alloy NPs exhibit improved electrocatalytic activity and stability. Functionalized carbon supports are applied as substrates to tune the nanoscale morphologies of the obtained bimetallic phases under appropriate calcination and hydrogenation treatments. Spill-over effect aids a reduction of a high weight loading of Cu in its metallic phase, in turn, these Cu atoms integrate into Pd lattice and isolate Pd neighbouring atoms. Surface analyses show that a certain amount of the isolated Pd remains on the surfaces of Pd-Cu alloy NPs, which is responsible for the enhanced electrocatalytic performance.  相似文献   

20.
Maximizing the platinum utilization in electrocatalysts toward oxygen reduction reaction (ORR) is very desirable for large‐scale sustainable application of Pt in energy systems. A cost‐effective carbon‐supported carbon‐defect‐anchored platinum single‐atom electrocatalysts (Pt1/C) with remarkable ORR performance is reported. An acidic H2/O2 single cell with Pt1/C as cathode delivers a maximum power density of 520 mW cm?2 at 80 °C, corresponding to a superhigh platinum utilization of 0.09 gPt kW?1. Further physical characterization and density functional theory computations reveal that single Pt atoms anchored stably by four carbon atoms in carbon divacancies (Pt‐C4) are the main active centers for the observed high ORR performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号