首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A motion control problem for a dynamic system under disturbances is considered on a finite time interval. There are compact geometric constraints on the values of the control and disturbance. The equilibrium condition in the small game is not assumed. The aim of the control is to minimize a given terminal performance index. The guaranteed result optimization problem is posed in the context of the game-theoretical approach. In the case when realizations of the disturbance belong to some a priori unknown compact subset of L1 (the space of functions that are Lebesgue summable with the norm), we propose a new discrete-time control procedure with a guide. The proximity between the motions of the system and the guide is provided by the dynamic reconstruction of the disturbance. The quality of the control process is achieved by using an optimal counter-strategy in the guide. Conditions on the equations of motion under which this procedure ensures an optimal guaranteed result in the class of quasi-strategies are given. The scheme of the proof makes it possible to estimate the deviation of the realized value of the performance index from the value of the optimal result depending on the discretization parameter. Illustrative examples are given.  相似文献   

2.
For a dynamical system with discrete and distributed time delays, a control problem under disturbance or counteraction is considered. The problem is formalized in the context of the game-theoretical approach in the class of control strategies with memory. The problem is associated with a functional Hamilton-Jacobi type equation with coinvariant derivatives. The minimax and viscosity approaches to a generalized solution to this equation are discussed. It is shown that, under the same condition at the right endpoint, the minimax and viscosity solutions coincide, thereby uniquely defining the functional of optimal guaranteed result in the control problem.  相似文献   

3.
A linear problem of optimal guaranteed control of a delay system is considered in which geometric constraints on control actions and terminal constraints on states are present. A new concept of a state of the problem that represents a finite-dimensional vector is introduced. Three kinds of optimal feedback are defined. We describe methods for implementing open-loop and closable optimal feedbacks. They are based on a fast dual method for the correction of optimal programs. The results are illustrated by examples.  相似文献   

4.
This paper is devoted to an optimal control problem of Maxwell??s equations in the presence of pointwise state constraints. The control is given by a divergence-free three-dimensional vector function representing an applied current density. To cope with the divergence-free constraint on the control, we consider a vector potential ansatz. Due to the lack of regularity of the control-to-state mapping, existence of Lagrange multipliers cannot be guaranteed. We regularize the optimal control problem by penalizing the pointwise state constraints. Optimality conditions for the regularized problem can be derived straightforwardly. It also turns out that the solution of the regularized problem enjoys higher regularity which then allows us to establish its convergence towards the solution of the unregularized problem. The second part of the paper focuses on the numerical analysis of the regularized optimal control problem. Here the state and the control are discretized by Nédélec??s curl-conforming edge elements. Employing the higher regularity property of the optimal control, we establish an a priori error estimate for the discretization error in the $\boldsymbol{H}(\bold{curl})$ -norm. The paper ends by numerical results including a numerical verification of our theoretical results.  相似文献   

5.
We consider the minimization problem of an integral functional with integrand that is not convex in the control on solutions of a control system described by fractional differential equation with mixed nonconvex constraints on the control. A relaxation problem is treated along with the original problem. It is proved that, under general assumptions, the relaxation problem has an optimal solution, and that for each optimal solution there is a minimizing sequence of the original problem that converges to the optimal solution with respect to the trajectory, the control, and the functional in appropriate topologies simultaneously.  相似文献   

6.
This paper is devoted to the problem of the minimax control of a dynamical system with quadratic performance functional under external disturbances and geometric control constraints. The optimal guaranteed control strategy is obtained in explicit form.Translated fromMatematicheskie Zametki, Vol. 60, No. 2, pp. 198–205, August, 1996.This research was supported by the Russian Foundation for Basic Research under grant No. 95-01-000771a.  相似文献   

7.
A comprehensible and unified system control approach is presented to solve a class of production/inventory smoothing problems. A nonstationary, non-Gaussian, finite-time linear optimal solution with an attractive computation scheme is obtained for a general quadratic and linear cost structure. A complete solution to a classical production/inventory control problem is given as an example. A general solution to the discrete-time optimal regulator with arbitrary but known disturbance is provided and discussed in detail. A computationally attractive closed-loop suboptimal scheme is presented for problems with constraints or nonquadratic costs. Implementation and interpretation of the results are discussed.  相似文献   

8.
Within the game-theoretical approach, we consider a minimax feedback control problem for a linear dynamical system with a positional quality index, which is the norm of the deviation of the motion from given target points at given times. Control actions are subject to both geometric and integral constraints. A procedure for the approximate calculation of the optimal guaranteed result and for the construction of a control law that ensures the result is developed. The procedure is based on the recursive construction of upper convex hulls of auxiliary program functions. Results of numerical simulations are presented.  相似文献   

9.
10.
In this work, new results on functional type a posteriori estimates for elliptic optimal control problems with control constraints are presented. More precisely, we derive new, sharp, guaranteed, and fully computable lower bounds for the cost functional in addition to the already existing upper bounds. Using both, the lower and the upper bounds, we arrive at two‐sided estimates for the cost functional. We prove that these bounds finally lead to sharp, guaranteed and fully computable upper estimates for the discretization error in the state and the control of the optimal control problem. First numerical tests are presented confirming the efficiency of the a posteriori estimates derived. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 403–424, 2017  相似文献   

11.
In this paper, we consider a class of optimal control problems which is governed by nonsmooth functional inequality constraints involving convolution. First, we transform it into an equivalent optimal control problem with smooth functional inequality constraints at the expense of doubling the dimension of the control variables. Then, using the Chebyshev polynomial approximation of the control variables, we obtain an semi-infinite quadratic programming problem. At last, we use the dual parametrization technique to solve the problem.  相似文献   

12.
In this paper, a variational problem is considered with differential equality constraints over a variable interval. It is stressed that the abnormality is a local character of the admissible set; consequently, a definition of regularity related to the constraints characterizing the admissible set is given. Then, for the local minimum necessary conditions, a compact form equivalent to the well-known Euler equation and transversality condition is given. By exploiting this result and the previous definition of regularity, it is proved that nonregularity is a necessary and sufficient condition for an admissible solution to be an abnormal extremal. Then, a necessary and sufficient condition is given for an abnormal extremal to be weakly abnormal. The analysis of the abnormality is completed by considering the particular case of affine constraints over a fixed interval: in this case, the abnormality turns out to have a global character, so that it is possible to define an abnormal problem or a normal problem. The last section is devoted to the study of an optimal control problem characterized by differential constraints corresponding to the dynamics of a controlled process. The above general results are particularized to this problem, yielding a necessary and sufficient condition for an admissible solution to be an abnormal extremal. From this, a previously known result is recovered concerning the linearized system controllability as a sufficient condition to exclude the abnormality.  相似文献   

13.
For control problems under disturbance of dynamical systems described by differential equations with discrete and distributed time delays and with initial data satisfying the Lipschitz property, the corresponding Lipschitzness of the optimal guaranteed result functional is established and inequalities for its directional derivatives are obtained.  相似文献   

14.
Optimal impulsive control of systems arising from linear compartment models for drug distribution in the human body is considered. A system of linear, time-invariant, homogeneous differential equations is given along with a set of continuous constraints on state and control. The object is to develop a constructive algorithm for the computation of the optimal control relative to a convex cost functional. It is first shown that under suitable hypotheses, satisfying the continuous constraints is equivalent to satisfying the constraints at a finite set of abstractly definedcritical points. Once these critical points have been determined, the solution of the optimal control problem is found as the solution of a finite-dimensional convex programming problem. The set of critical points can often be determineda priori solely from the qualitative behavior of the solutions of the system. A class of such problems, generalizing the so-calledplateau effect, is considered in detail. It is shown that the solution achieving the plateau effect is indeed optimal in certain cases. In a subsequent paper, an iterative algorithm will be given for the solution of these problems when the critical points cannot all be determineda priori.This work was supported in part by the National Science Foundation under Grant No. GP-20130.  相似文献   

15.
16.
In this paper, the disturbance attenuation properties for a class of linear hybrid systems are investigated, and a hybrid optimal persistent disturbance attenuation control problem is studied. First, a procedure is developed to determine the minimal ll induced gain of linear hybrid systems. However, for general hybrid systems, the termination of the procedure is not guaranteed. Then, the decidability issues are discussed. The termination of the procedure in a finite number of steps is shown for a subclass of hybrid systems with simplified discrete event dynamics, called switched linear systems. Finally, the optimal persistent disturbance attenuation controller synthesis problem is studied. It is shown that the optimal performance level can be achieved by a piecewise linear state feedback control law, and a systematic approach is proposed to design such feedback control.  相似文献   

17.
This paper is concerned with the optimal control of the sterilization of prepackaged food. The investigated system is constructed as an optimal control problem with free final horizon and phase constraints. Pontryagin’s maximum principle, the necessary optimality condition for the system, is studied by the Dubovitskii and Milyutin functional analytical approach. The derived necessary condition is presented for the problem with both the control constraints and the state constraints.  相似文献   

18.
This paper deals with the problem of optimal guaranteed cost control for linear systems with interval time-varying delayed state and control. The time delay is assumed to be a continuous function belonging to a given interval, but not necessary to be differentiable. A linear–quadratic cost function is considered as a performance measure for the closed-loop system. By constructing a set of augmented Lyapunov–Krasovskii functional combined with Newton–Leibniz formula, a guaranteed cost controller design is presented and sufficient conditions for the existence of a guaranteed cost state-feedback for the system are given in terms of linear matrix inequalities (LMIs). Numerical examples are given to illustrate the effectiveness of the obtained result.  相似文献   

19.
This paper deals with a class of optimal control problems in which the system is governed by a linear partial differential equation and the control is distributed and with constraints. The problem is posed in the framework of the theory of optimal control of systems. A numerical method is proposed to approximate the optimal control. In this method, the state space as well as the convex set of admissible controls are discretized. An abstract error estimate for the optimal control problem is obtained that depends on both the approximation of the state equation and the space of controls. This theoretical result is illustrated by some numerical examples from the literature.  相似文献   

20.
Abstract

This article is concerned with the problem of guaranteed cost control for a class of uncertain stochastic impulsive systems with Markovian switching. To the best of our knowledge, it is the first time that such a problem is investigated for stochastic impulsive systems with Markovian switching. For an uncontrolled system, the conditions in terms of certain linear matrix inequalities (LMIs) are obtained for robust stochastical stability and an upper bound is given for the cost function. For the controlled systems, a set of LMIs is developed to design a linear state feedback controller which can stochastically stabilize the class of systems under study and guarantee the given cost function to have an upper bound. Further, an optimization problem with LMI constraints is formulated to minimize the guaranteed cost of the closed-loop system. Finally, a numerical example is provided to show the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号