共查询到20条相似文献,搜索用时 15 毫秒
1.
The results of an experimental investigation of supersonic flow at the Mach number M1=3 past a transverse gas jet flowing from an orifice in the edge of a dihedral with a linear angle of 90° are presented. The Mach number of the jet was varied from 1 to 3, and the ratio of the total pressure in the jet to the free stream pressure from 90 to 760. Visualization of the flow near the faces of the dihedral revealed the existence of internal lines of flow convergence and divergence in the region of three-dimensional separated flow, which indicates the presence of complex vortex structures. The dependence of the dimensions of the separated flow zone and the characteristic pressures in it on the jet parameters is explored.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 161–165, November–December, 1994. 相似文献
2.
S. Kenjereš S. ten CateC.J. Voesenek 《International Journal of Heat and Fluid Flow》2011,32(3):510-528
The present paper reports on numerical investigations of vortical structures in transient flow regimes generated by the local action of the Lorentz force on an electrically conductive fluid. The locally imposed non-uniform magnetic field generates similar effects as observed for flows over submerged solid obstacles. It is demonstrated that complex flow patterns can be generated by imposing magnetic fields of different strengths. The initial validation of the electromagnetically extended Navier-Stokes solver on unstructured numerical grids is performed in the low-Reynolds number range 100 ? Re ? 400 for different values of the magnetic interaction parameter. A generally good agreement is obtained in comparison with similar numerical studies of [Votyakov et al., 2007] and [Votyakov et al., 2008] for the low-Reynolds number cases. Then, a series of simulations are performed in transitional flow regimes (Re = 900) for different values of the interaction parameter (N = 3, … , 25). Simulations demonstrated the appearance of vortex-shedding phenomena similar to the flows behind solid obstacles. In contrast to the solid obstacles, the magnetic obstacles also generated the vortical flow patterns inside the magnetically affected regions. This feature can be used for the flow control of electrically conductive fluids, for efficient enhancements of the wall-heat transfer or for better mixing of passive scalars. Despite the laminar inflow conditions, turbulent bursts are observed in the magnetic wake region for the Re = 900 case. The velocity spectra and spatial distributions of the long-time averaged second-moments of the velocity field demonstrated that turbulence was locally sustained in the proximity of the magnetic wake edge. 相似文献
3.
4.
We performed an experimental investigation of the flowfield of a transverse jet into supersonic flow with a pseudo-shock wave (PSW). In this study, we injected compressed air as the injectant, simulating hydrocarbon fuel. A back pressure control valve generated PSW into Mach 2.5 supersonic flow and controlled its position. The positions of PSW were set at nondimensional distance from the injector by the duct height (x/H) of ?1.0, ?2.5, and ?4.0. Particle image velocimetry (PIV) gave us the velocity of the flowfield. Mie scattering of oil mist only with the jet was used to measure the spread of the injectant. Furthermore, gas sampling measurements at the exit of the test section were carried out to determine the injectant mole fraction distributions. Gas sampling data qualitatively matched the intensity of Mie scattering. PIV measurements indicated that far-upstream PSW decelerated the flow speed of the main stream and developed the boundary layer on the wall of the test section. The flow speed deceleration at the corner of the test section was remarkable. The PSW produced nonuniformity in the main stream and reduced the momentum flux of the main stream in front of the injector. The blowing ratio, defined as the square root of the momentum flux ratio, of the jet and the main stream considering the effect of the boundary layer thickness was shown to be a useful parameter to explain the jet behavior. 相似文献
5.
We employ detailed numerical simulations to understand the physical mechanism underlying the surface breakup of a non-turbulent liquid jet injected transversely into a high pressure gaseous crossflow under isothermal conditions. The numerical observations reveal the existence of shear instability on the jet periphery as the primary destabilization mechanism. The temporal growth of such azimuthal instabilities leads to the formation of interface corrugations, which are eventually sheared off of the jet surface as sheet-like structures. The sheets next undergo disintegration into ligaments and drops during the surface breakup process. The proposed instability mechanism is inherently an inviscid mechanism, contrary to the previously suggested mechanism of surface breakup (known as “boundary layer stripping”), which is relied on a viscous interpretation. The numerically obtained length and time scales of the shear instabilities on the jet laterals are compared with the results of Behzad et al. (2015) on temporal linear stability analyses of a jet in crossflow at near the nozzle. The stability characteristics of the most amplified modes (i.e., the wavenumber and the corresponding growth rate) obtained from the numerical simulations and the stability analyses are in good agreement. 相似文献
6.
A flow pattern created by the interaction of a supersonic flow with a transverse sonic or supersonic jet injected normally to the direction of the main flow through a circular aperture in a plate is considered. The pressure rises in front of the jet owing to the retarding action of the incident flow. The boundary layer building up on the wall in front of the injection nozzle is accordingly detached. The flow pattern in the region of interaction between the jet and the external flow is illustrated in Fig. 1. The three-dimensional zone of detachment thus formed deflects the incident flow from the wall, and in front of the jet a complicated system of sharp jumps in contraction develops. A three-dimensional system of jumps also develops in the jet itself.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No, 5, pp. 193–197, September–October, 1970. 相似文献
7.
8.
9.
In order to study the mixing mechanism of fuel and air in gas turbine, large eddy simulation has been used to investigate the methane jet-in-crossflow with the velocity ratio (R) of 1.5 and 4. This study aims to explore the formation mechanism of vortices such as the hairpin vortices, hovering vortices and horseshoe vortices, the relationship between the fuel–air mixing and flow characteristics at different velocity ratios. The numerical methods in the present work are firstly validated with the experimental data in terms of mean and root mean square values of velocity. For R = 4, the shear layer vortices, horseshoe vortices, counter-rotating vortices pairs (CVP) and wake vortices can be observed, while the jet shear layer cannot be observed for R = 1.5. The hairpin vortices originating from the vortice-ring are lifted and shed from the downstream of the jet-outlet due to Kutta-Joukowski lift. The hairpin vortices are similar to CVP. The horseshoe vortices in R = 1.5 and 4 are formed due to the blockage of the jet (CH4) and the crossflow (air) respectively, and its evolution is associated with the hovering vortices which only exist for R = 1.5. The uniform index and pr-obability density function are used for quantitative analysis of the mixing performance. The uniform index at X/D = 0 (fuel-inlet) and at X/D = 25 (outlet) are 0.033 and 0.335 for R = 1.5 and 0.130 and 0.047 for R = 4. For R = 4, the jet penetration is higher and the deflection angle of jet is smaller than that in case of R = 1.5. Higher R will provide more region for mixing, therefore uniform index is higher and the mixing is more uniform in the downstream. 相似文献
10.
When sonic annular jets encounter a supersonic flow, two interaction regimes are possible with open or closed central separation regions. When the flow regimes change, there is an abrupt change in the separation of the shock wave from the nozzle and of the pressure in the central separation region, and hysteresis is also observed. The flow regimes with open central separation region are stationary and can be calculated numerically on the basis of Euler's equations fairly accurately.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 175–180, September–October, 1979. 相似文献
11.
12.
Numerical investigation of a transverse sonic jet injected into a supersonic crossflow was carried out using large-eddy simulation for a free-stream Mach number M = 1.6 and a Reynolds number Re = 1.38 × 105 based on the jet diameter. Effects of the jet-to-crossflow momentum ratio on various fundamental mechanisms dictating the intricate flow phenomena, including flow structures, turbulent characters and frequency behaviors, have been studied. The complex flow structures and the relevant flow features are discussed to exhibit the evolution of shock structures, vortical structures and jet shear layers. The strength of the bow shock increases and the sizes of the barrel shock and Mach disk also increase with increasing momentum ratio. Turbulent characters are clarified to be closely related to the flow structures. The jet penetration increases with the increase of the momentum ratio. Moreover, the dominant frequencies of the flow structures are obtained using spectral analysis. The results obtained in this letter provide physical insight in understanding the mechanisms relevant to this complex flow. 相似文献
13.
M. D. Anokhin Yu. A. Vinogradov A. I. Zubkov B. E. Lyagushin Yu. A. Panov 《Fluid Dynamics》1998,33(2):186-189
The three-dimensional shape of the shock wave formed ahead of a sonic jet flowing out into a supersonic flow through the surface
of a sharp cone is determined. The shape of the wave in the longitudinal and transverse cross-sections of the model is constructed
using schlieren photographs taken for various angles of rotation and freestream Mach numbers M=1.75–3.
Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 41–44, March–April, 1998.
This research was carried out with financial support from the Russian Foundation for Basic Research (project No. 95-01-00709a). 相似文献
14.
K. N. Volkov V. N. Emelyanov M. S. Yakovchuk 《Journal of Applied Mechanics and Technical Physics》2015,56(5):789-798
This paper presents a numerical simulation of the flow resulting from transverse jet injection into a supersonic flow through a slot nozzle at different pressures in the injected jet and the crossflow. Calculations on grids with different resolutions use the Spalart–Allmaras turbulence model, the k–ε model, the k–ω model, and the SST model. Based on a comparison of the calculated and experimental data on the wall pressure distribution, the length of the recirculation area, and the depth of jet penetration into the supersonic flow, conclusions are made on the accuracy of the calculation results for the different turbulence models and the applicability of these models to similar problems. 相似文献
15.
V. I. Zapryagaev A. V. Solotchin 《Journal of Applied Mechanics and Technical Physics》1991,32(4):503-507
Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 42–47, July–August, 1991. 相似文献
16.
17.
The formation of a pulsed jet behind supersonic nozzles is considered when relaxation processes take place in the gas entering the nozzle. In a general formulation, the problem of the motion of the front of the exhausting matter and the disturbances accompanying it in the process of formation of a pulsed jet is determined by a large number of parameters, which characterize the exhausting gas and the residual gas of the pressure chamber and also the geometry of the flow conditions. A reliable computational model of a pulsed jet does not exist. To construct such a model, experiments are required in a wide range of boundary and initial conditions. An investigation was made into flow of shockheated argon, nitrogen, and carbon dioxide out of nozzles set up at the end of a shock tube. Generalized dependences were obtained for describing the motion of the front of the nonstationary jet and the wave in front of it in a wide range of the initial pressure-difference parameters and variation of the stagnation temperatures. The choice of the generalized parameters when relaxation of the excited internal degrees of freedom of the molecules of the gas can occur at the entrance to the nozzle is discussed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 129–135, November–December, 1980. 相似文献
18.
19.
20.
A. N. Antonov 《Journal of Applied Mechanics and Technical Physics》1977,18(6):769-774
Existing computational methods [1–5] do not enable one to calculate complex flows behind steps, accounting for nonuniformity of the incident supersonic flow and the effect of compression and expansion waves arriving in the near-wake region. For example, computational methods based on the methods of [1] or [2] are used mainly in uniform supersonic flow ahead of the base edge and, for the most part, cannot be used to calculate flow in annular nozzles with irregular conditions. An exception is reference [6], which investigated flow in an annular nozzle behind a cylindrical center-body. The present paper suggests a method, based on references [7, 8] for calculating the base pressure behind two-dimensional and three-dimensional steps, washed by a supersonic jet.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 43–51, November– December 1977. 相似文献