首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The first experimental results on the dynamics of a plasma cloud produced by a miniature coaxial gun in a magnetized background plasma have been reported. The record dimension of the plasma in the Krot device, which is more than 1 m across a magnetic field, has allowed the first implementation of the regime of “unbounded” background plasma, which is optimal for the simulation of astro- and geophysical phenomena. In the sub-Alfvénic regime of cloud expansion, a set of characteristic effects has been demonstrated, including the formation of a diamagnetic cavity, deceleration of ions of the cloud by the background plasma, and development of high-frequency instability at the edge of the cloud.  相似文献   

2.
It has been shown experimentally that a quasistationary magnetic field is generated in a weakly collisional magnetized plasma by a spatially nonuniform high-frequency whistler-mode field. The sources of the quasistationary magnetic field are nonlinear currents generated due to the longitudinal and transverse components of the ponderomotive force, acting on charged particles in the spatially localized high-frequency pump field. The dynamics of the excited magnetic fields has been analyzed. It was found that the settling time of the quasistationary magnetic field is determined by the switching-on time of the high-frequency field and the propagation of pulsed current and magnetic fields from the region of their generation occurs with the velocity of low-frequency whistler waves.  相似文献   

3.
基于Langevin问题探讨广义M-J集的物理意义   总被引:5,自引:0,他引:5       下载免费PDF全文
王兴元  孟庆业 《物理学报》2004,53(2):388-395
基于对一典型Langevin问题——在双势井和变化的磁场中并受一恒冲量不断作用的运动带电粒子的动力学分析,利用频闪采样法,给出了描述粒子速度变化规律的复差分方程.选取适当的磁场强度和时间间隔(采样周期),将这一差分方程简化为用来构造广义M-J(Mandelbrot-Julia)集的复映射,并基于粒子的动力学特征探讨了广义M-J集的物理意义.结果发现:1)广义M-J集的分形结构特征可形象地反映出粒子速度的变化规律;2)选取的时间间隔有、无意义,决定了广义M-J集的分形结构是否具有连续性;3)广义M-J集的演 关键词: Langevin问题 双势井 磁场 广义M-J集 物理意义  相似文献   

4.
We consider the motion of charged particles in the vacuum magnetospheres of rotating neutron stars with a strong surface magnetic field, B ≳ 1012 G. The electrons and positrons falling into the magnetosphere or produced in it are shown to be captured by the force-free surface E · B = 0. Using the Dirac-Lorentz equation, we investigate the dynamics of particle capture and subsequent motion near the force-free surface. The particle energy far from the force-free surface has been found to be determined by the balance between the power of the forces of an accelerating electric field and the intensity of curvature radiation. When captured, the particles perform adiabatic oscillations along the magnetic field lines and simultaneously move along the force-free surface. We have found the oscillation parameters and trajectories of the captured particles. We have calculated the characteristic capture times and energy losses of the particles through the emission of both bremsstrahlung and curvature photons by them. The capture of particles is shown to lead to a monotonic increase in the thickness of the layer of charged plasma accumulating near the force-free surface. The time it takes for a vacuum magnetosphere to be filled with plasma has been estimated.  相似文献   

5.
Features of propagation of relativistic solar cosmic rays in magnetic clouds have been considered on the basis of model calculations. Magnetic clouds have a structure of magnetic flux ropes and are extended from the Sun to the Earth via coronal mass ejections. Features of propagation of particles of different energies in a magnetic cloud are discussed. The propagation of high-energy solar protons in the loop-like structure of the interplanetary magnetic field in the event of October 28, 2003 is analyzed.  相似文献   

6.
In this work, we, for the first time, present the experimental study of complex plasmas in glow discharge in the narrow region of the current channel under magnetic fields up to 104 G. We obtain the conditions for the existence and stability of structures under the whole range of the magnetic field. We could detect a record‐breaking rotation velocity of the dusty structure, reaching 15 rad/s. Measurements of the angular velocity behaviour under varied magnetic fields were performed. In order to characterize the geometry of the dusty structure as a function of the magnetic induction, the size and shape of the sections normal to the discharge axis were measured. The inter‐particle distance as another informative characteristic was fixed for structures under a whole range of the applied magnetic field. Based on the results of the mentioned observations, we propose a qualitative interpretation of the rotation variation with the magnetic field. This interpretation includes the model of mechanisms driving the rotation of the dusty structure.  相似文献   

7.
We have proposed a new repulsive layer model for describing the interaction between steric layers of coated cubic particles. This approach is an effective technique applicable to particle-based simulations such as a Brownian dynamics simulation of a suspension composed of cubic particles. 3D Brownian dynamics simulations employing this repulsive interaction model have been performed in order to investigate the equilibrium aggregate structures of a suspension composed of cubic haematite particles. It has been verified that Brownian dynamics employing the present steric interaction model are in good agreement with Monte Carlo results with respect to particle aggregate structures and particle orientational characteristics. From the viewpoint of developing a surface modification technology, we have also investigated a regime change in the aggregate structure of cubic particle in a quasi-2D system by means of Brownian dynamics simulations. If the magnetic particle–particle interaction strength is relatively strong, in zero applied magnetic field the particles aggregate in an offset face-to-face configuration. As the magnetic field strength is increased, the offset face-to-face structure is transformed into a more direct face-to-face contact configuration that extends throughout the whole simulation region.  相似文献   

8.
Pulsed digital holographic interferometry has been used to study the effect of the laser spot diameter on the shock wave generated in the ablation process of an Nd:YAG laser pulse on a Zn target under atmospheric pressure. For different laser spot diameters and time delays, the propagation of the expanding vapour and of the shock wave were recorded by intensity maps calculated using the recorded digital holograms. From the latter, the phase maps, the refractive index and the density field can be derived. A model was developed that approaches the density distribution, in particular the ellipsoidal expansion characteristics. The induced shock wave has an ellipsoid shape that approaches a sphere for decreasing spot diameter. The ellipsoidal shock waves have almost the same centre offset towards the laser beam and the same aspect ratio for different time steps. The model facilitates the derivation of the particle velocity field. The method provides valuable quantitative results that are discussed, in particular in comparison with the simpler point source explosion theory.  相似文献   

9.
Within the framework of a tunneling Hamiltonian, we obtain an equation for the reduced density matrix to describe quasiclassical dynamics and fluctuation effects in distributed Josephson junctions for voltages comparable with the superconducting gap. For quasiclassical dynamics, we derive the Langevin equation describing in a self-consistent way the resistive state and fluctuations due to both the tunneling current and the electromagnetic field. Current-voltage characteristics of a Josephson oscillator are calculated in the high magnetic field approximation. The intensity and shape of the spectral line of radiation due to vortices moving in a distributed Josephson junction are found.  相似文献   

10.
周期永磁磁场导引环形强流电子束研究   总被引:2,自引:1,他引:1       下载免费PDF全文
 利用磁场有限元法,计算了周期性布置的永磁铁内的磁场;利用流体模型分析了作用在束电子上的力并导出了改进Matheiu函数形式的径向力方程;利用2.5维PIC程序研究了束传输的物理过程。计算发现强流相对论电子束的稳定传输与束等离子体密度、束平衡位置、磁场的强度、磁场周期长度等有关。研究认为利用周期性永磁场导引数kA的环形电子束,使之稳定传输是可能的。  相似文献   

11.
The collisionless interaction of an expanding high–energy plasma cloud with a magnetized background plasma in the presence of a dipole magnetic field is examined in the framework of a 2D3V hybrid (kinetic ions and massless fluid electrons) model. The retardation of the plasma cloud and the dynamics of the perturbed electromagnetic fields and the background plasma are studied for high Alfvén–Mach numbers using the particle–in–cellmethod. It is shown that the plasma cloud expands excluding the ambient magnetic field and the background plasma to form a diamagnetic cavity which is accompanied by the generation of a collisionless shock wave. The energy exchange between the plasma cloud and the background plasma is also studied and qualitative agreement with the analytical model suggested previously is obtained (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
A magnetic cloud model is proposed in the form of a torus with a characteristic type of magnetic field (a flux rope) located inside an interplanetary coronal mass ejection propagating away from the Sun into interplanetary space. The magnetic field in the torus is determined. The transparency of the magnetic cloudsolar wind boundary is calculated for cosmic rays with different energies.  相似文献   

13.
Akira Satoh 《Molecular physics》2014,112(7):1002-1011
We have investigated various problems that arise in applying the Brownian dynamics method to a suspension composed of rod-like hematite particles, which have a magnetic moment normal to the particle axis direction. The accuracy and the deviation of simulation results from theoretical solutions have been discussed by comparison with the theoretical solutions that were obtained by solving the basic equations of the orientational distribution function. The characteristics of the negative viscosity are not observed to be dependent on a time interval unless a sufficiently short time interval is used. The present simulation results can satisfactorily reproduce the qualitative characteristics of the negative magneto-rheological effect that was predicted by the previous theoretical investigation. Good quantitative agreement is obtained in the range of small-applied magnetic fields, but agreement is not significantly good in the large magnetic field region. The deviation of the negative viscosity from the theoretical prediction cannot be improved by using a more accurate numerical algorithm such as moving from Euler to second-order or fourth-order Runge–Kutta. The results of the orientational distribution can well reproduce the characteristic features that the distribution has a gradual shape with low linear-like peak, which is in significant contrast to the sharp single-peak distribution of a ferromagnetic rod-like particle dispersion. The present orientational distributions are in significantly good agreement with those of the theoretical prediction in regard to the position and the height of a peak and the general shape of the overall profile. Good agreement of the present magnetisation curves with the theoretical prediction verifies that the spin rotational Brownian motion is activated at a physically reasonable level in the present simulations.  相似文献   

14.
The validity of the application of the dissipative particle dynamics (DPD) method to ferromagnetic colloidal dispersions has been investigated by conducting DPD simulations for a two–dimensional system. First, the interaction between dissipative and magnetic particles has been idealized as some model potentials, and DPD simulations have been carried out using such model potentials for a two magnetic particle system. In these simulations, attention has been focused on the collision time for the two particles approaching each other and touching from an initially separated position, and such collision time has been evaluated for various cases of mass and diameter of dissipative particles and model parameters, which are included in defining the equation of motion of dissipative particles. Next, a multi–particle system of magnetic particles has been treated, and particle aggregates have been evaluated, together with the pair correlation function along an applied magnetic field direction. Such characteristics of aggregate structures have been compared with the results of Monte Carlo and Brownian dynamics simulations in order to clarify the validity of the application of the DPD method to particle dispersion systems. The present simulation results have clearly shown that DPD simulations with the model interaction potential presented here give rise to physically reasonable aggregate structures under circumstances of strong magnetic particle–particle interactions as well as a strong external magnetic field, since these aggregate structures are in good agreement with those of Monte Carlo and Brownian dynamics simulations.  相似文献   

15.
The present study aims to clarify the effects of turbulence intensity and coal concentration on the spherical turbulent flame propagation of a pulverized coal particle cloud. A unique experimental apparatus was developed in which coal particles can be dispersed homogeneously in a turbulent flow field generated by two fans. Experiments on spherical turbulent flame propagation of pulverized coal particle clouds in a constant volume spherical chamber in various turbulence intensities and coal concentrations were conducted. A common bituminous coal was used in the present study. The flame propagation velocity was obtained from an analysis of flame propagation images taken using a high-speed camera. It was found that the flame propagation velocity increased with increasing flame radius. The flame propagation velocity increases as the turbulence intensity increases. Similar trends were observed in spherical flames using gaseous fuel. The coal concentration has a weak effect on the flame propagation velocity, which is unique to pulverized coal combustions in a turbulent field. These are the first reports of experimental results for the spherical turbulent flame propagation behavior of pulverized coal particle clouds. The results obtained in the present study are obviously different from those of previous pulverized coal combustion studies and any other results of gaseous fuel combustion research.  相似文献   

16.
A stochastic-deterministic model is presented for the propagation of a downward-moving leader. Lightning formation is described by a stochastic growth of branching discharge channels which is determined by the electrostatic field. The dynamics of the electric field and of the charge distribution over the lightning structure are calculated deterministically. The model includes the initiation of lightning, a preliminary discharge in a cloud, the propagation of a downwardmoving stepped leader toward the earth, and the initiation and upward motion of a return stroke from the earth’s surface. Numerical execution of the model yields a dynamic picture of the development of the downward-moving leader and of the intracloud discharge structure. The effect of the charge density in the cloud and the parameters of the developing channels on the spatial-temporal, current, and charge characteristics of the stepped leader’s propagation are studied. The effect of free-standing structures on the distribution of points on the earth’s surface where lightning strikes is examined. Zh. Tekh. Fiz. 69, 48–53 (April 1999)  相似文献   

17.
Quantum states have been calculated analytically; the dynamics of a wave packet in a magnetic field has been investigated, and the optical absorption coefficient has been calculated for surface states in 3D topological insulators of the Bi2Te3 family. We have detected a qualitative effect of the hexagonal warping of the spectrum on the structure of wavefunctions at the Landau levels, its manifestation in the features of the wave packet dynamics in a quantizing magnetic field, as well as in the frequency dependence of the optical absorption coefficient, in which new peaks that are absent in the isotropic model of the spectrum appear depending on the polarization of the incident wave. The effects considered here can be manifested in the optical and transport experiments with topological insulators, which makes it possible to determine the parameters of their band structure.  相似文献   

18.
19.
In this paper, the trajectory and kinetic energy of a charged particle, subjected to interaction from a laser beam containing an additionally applied external static axial magnetic field, have been analyzed. We give the rigorous analytical solutions of the dynamic equations. The obtained analytical solutions have been verified by performing calculations using the derived solutions and the well known Runge-Kutta procedure for solving original dynamic equations. Both methods gave the same results. The simulation results have been obtained and presented in graphical form using the derived solutions. Apart from the laser beam, we show the results for a maser beam. The obtained analytical solutions enabled us to perform a quantitative illustration, in a graphical form of the impact of many parameters on the shape, dimensions and the motion direction along a trajectory. The kinetic energy of electrons has also been studied and the energy oscillations in time with a period equal to the one of a particle rotation have been found. We show the appearance of, so-called, stationary trajectories (hypocycloid or epicycloid) which are the projections of the real trajectory onto the (x, y) plane. Increase in laser or maser beam intensity results in the increase in particle’s trajectory dimension which was found to be proportional to the amplitude of the electric field of the electromagnetic wave. However, external magnetic field increases the results in shrinking of the trajectories. Performed studies show that not only amplitude of the electric field but also the static axial magnetic field plays a crucial role in the acceleration process of a charged particle. At the authors of this paper best knowledge, the precise analytical solutions and theoretical analysis of the trajectories and energy gains by the charged particles accelerated in the laser beam and magnetic field are lacking in up to date publications. The authors have an intention to clarify partly some important aspects connected with this process. The presented theoretical studies apply for arbitrary charged particle and the attached figures-for electrons only.  相似文献   

20.
The dynamics of magnetization oscillations with a considerable amplitude and a radial symmetry in small ferromagnetic particles in the form of a thin disk with a magnetic vortex has been investigated. The collective variables that describe radially symmetric oscillations of the magnetization dynamics for particles in the vortex state are introduced, and the dependence of the particle energy is studied as a function of these variables. The analytical expressions describing the frequency of magnetization oscillations with a radial symmetry, including nonlinear oscillations, are derived using the collective variables. It is shown that the presence of a magnetic field oriented perpendicular to the particle plane reduces the oscillation frequency and can lead to hybridization of this mode with other modes of spin oscillations, including the mode of translational oscillations of the vortex core. The soliton solutions describing the propagation of collective oscillations along the chain of magnetic particles are found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号