首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the spin Coulomb drag in a quasi-two-dimensional electron gas of finite transverse width, including local field corrections beyond the random phase approximation (RPA). We find that the finite transverse width of the electron gas causes a significant reduction of the spin Coulomb drag. This reduction, however, is largely compensated by the enhancement coming from the inclusion of many-body local field effects beyond the RPA, thereby restoring good agreement with the experimental observations by C. P. Weber et al. [Nature (London) 437, 1330 (2005)].  相似文献   

2.
We investigate the spin drag effect in spin polarized transport beyond the random phase approximation by considering an effective scattering potential that incorporates self-consistently the effects of the short range Coulomb interaction through momentum dependent local field corrections. We find that the first order many-body correction to the spin transresistivity is determined by the local field factor for opposite-spin correlations.  相似文献   

3.
Coulomb drag between two quantum wires is exponentially sensitive to the mismatch of their electronic densities. The application of a magnetic field can compensate this mismatch for electrons of opposite spin directions in different wires. The resulting enhanced momentum transfer leads to the conversion of the charge current in the active wire to the spin current in the passive wire.  相似文献   

4.
发展了一种时-空分辨圆偏振光抽运-探测光谱及其理论,并用于本征GaAs量子阱中电子自旋扩散输运的实验研究.获得室温下本征GaAs量子阱中的“自旋双极扩散系数”为Das=37.5±15 cm2/s.此结果比用自旋光栅法测量到的掺杂GaAs量子阱中电子自旋扩散系数小.解释为是由于“空穴库仑拖曳”效应减慢了电子自旋波包的扩散输运. 关键词: 时-空分辨抽运-探测光谱 电子自旋扩散 GaAs量子阱  相似文献   

5.
We study the effect of spin Coulomb drag on the magnetoresistance and the spin-current injection efficiency of a layered structure consisting of a nonmagnetic semiconductor sandwiched between two ferromagnetic electrodes of spin polarization p. The calculations are done within the framework of the drift-diffusion theory, which we generalize to include the spin trans-conductivity σ↑↓. We find that for p close to 100% the spin drag enhances the magnetoresistance, while for smaller values of p it reduces it. A new approach to the measurement of σ↑↓ is suggested.  相似文献   

6.
We measure the Coulomb drag between parallel split-gate quantum wires with a quantum dot embedded in one of the two wires (drive wire). We observe negative Coulomb drag when a Coulomb oscillation peak appears in the drive wire and the conductance of the other wire (drag wire) is slightly below the first plateau. This indicates that correlation holes are dragged in the drag wire by single electron tunneling through the quantum dot in the drive wire. The drag is only promoted in the drag wire near the barrier regions of the dot, and low compressibility of the drag wire is necessary for the negative drag to occur.  相似文献   

7.
Coulomb drag shot noise has been studied theoretically for 1D interacting electron systems, which are realized, e.g., in single-wall nanotubes. We show that under adiabatic coupling to external leads, the Coulomb drag shot noise of two coupled or crossed nanotubes contains surprising effects, in particular, a complete locking of the shot noise in the tubes. In contrast to Coulomb drag of the average current, the noise locking is based on a symmetry of the underlying Hamiltonian and is not limited to asymptotically small energy scales.  相似文献   

8.
We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means, such as the random matrix theory, or by numerical simulations. We show that Coulomb drag is sensitive to localized states, which usual transport measurements do not probe. For chaotic 2D systems we find a vanishing average drag, with a nonzero variance. Disordered 1D wires show a finite drag, with a large variance, giving rise to a possible sign change of the induced current.  相似文献   

9.
The effect of Coulomb drag on a gas of dipole excitons in spatially separated two-dimensional quantum wells containing electron and exciton gases is studied theoretically. The Coulomb drag of excitons can be used to control exciton transport in transistor structures whose active element is a two-dimensional gas of dipole excitons. Expressions for the exciton cross conductivity as a function of temperature are obtained for the diffusion and ballistic transport regimes. For each regime, the limiting cases in terms of the ratio of the Coulomb interaction screening length to the distance between the gases are analyzed. It is shown that, at temperatures exceeding considerably the exciton-gas degeneracy temperature, the cross conductivity is independent of the temperature, while in the opposite case it vanishes exponentially.  相似文献   

10.
吴绍全  方栋开  赵国平 《物理学报》2015,64(10):107201-107201
从理论上研究了平行双量子点系统中的电子关联效应对该系统磁输运性质的影响. 基于广义主方程方法, 计算了通过此系统的电流、微分电导和隧穿磁阻. 计算结果表明: 电子自旋关联效应可以促发一个很大的隧穿磁阻, 而电子库仑关联效应不仅可以压制电子自旋关联效应, 还可以导致负隧穿磁阻和负微分电导的出现. 对相关的基本物理问题进行了讨论.  相似文献   

11.
We review the fabrication and key transport properties of graphene double layers, consisting of two graphene monolayers placed in close proximity, independently contacted, and separated by an ultra-thin dielectric. We outline a simple band structure model relating the layer densities to the applied gate and inter-layer biases, and show that calculations and experimental results are in excellent agreement both at zero and in high magnetic fields. Coulomb drag measurements, which probe the electron–electron scattering between the two layers reveal two distinct regime: (i) diffusive drag at elevated temperatures, and (ii) mesoscopic fluctuation-dominated drag at low temperatures. We discuss the Coulomb drag results within the framework of existing theories.  相似文献   

12.
We report measurements of spin transitions for GaAs quantum dots in the Coulomb blockade regime and compare ground and excited state transport spectroscopy to direct measurements of the spin polarization of emitted current. Transport spectroscopy reveals both spin-increasing and spin-decreasing transitions, as well as higher-spin ground states, and allows g factors to be measured down to a single electron. The spin of emitted current in the Coulomb blockade regime, measured using spin-sensitive electron focusing, is found to be polarized along the direction of the applied magnetic field regardless of the ground state spin transition.  相似文献   

13.
We demonstrate that in a wide range of temperatures Coulomb drag between two weakly coupled quantum wires is dominated by processes with a small interwire momentum transfer. Such processes, not accounted for in the conventional Luttinger liquid theory, cause drag only because the electron dispersion relation is not linear. The corresponding contribution to the drag resistance scales with temperature as T2 if the wires are identical, and as T5 if the wires are different.  相似文献   

14.
《Physics letters. A》2014,378(11-12):892-898
Full counting statistics is a powerful tool to characterize the noise and correlations in transport through mesoscopic systems. In this work, we propose the theory of conditional spin counting statistics, i.e., the statistical fluctuations of spin-up (down) current given the observation of the spin-down (up) current. In the context of transport through a single quantum dot, it is demonstrated that a strong Coulomb interaction leads to a conditional spin counting statistics that exhibits a substantial change in comparison to that without Coulomb repulsion. It thus can be served as an effective way to probe the Coulomb interactions in mesoscopic transport systems. In case of spin polarized transport, it is further shown that the conditional spin counting statistics offers a transparent tool to reveal the spin-resolved bunching behavior.  相似文献   

15.
In this paper, we have investigated the effect of quantum layer thickness on Coulomb drag phenomenon in a double quantum well (DQW) system, in which the electrons momentum can transfer from one layer to another. We have applied the full random phase approximation (RPA) in dynamical dielectric matrix of this coupled two-dimensional electron gas (2DEG) system in order to obtain an improved result for temperature-dependent rate of momentum transfer. We have calculated the drag rate transresistivity for various well thicknesses at low and intermediate temperatures in Fermi-scale and for different electron gas densities. It has been obtained that the Coulomb drag rate increases with increasing the well width when the separation between the wells remains unchanged.  相似文献   

16.
郑军  李春雷  杨曦  郭永 《物理学报》2017,66(9):97302-097302
基于非平衡态格林函数方法,理论研究了与四个电极耦合的双量子点系统中的自旋和电荷能斯特效应,考虑了不同电极的磁动量结构和量子点内以及量子点间电子的库仑相互作用对热电效应的影响.结果表明铁磁端口中的磁化方向能够有效地调节能斯特效应:当电极1和电极3中的磁化方向反平行排列时,通过施加横向的温度梯度,系统中将会出现纯的自旋能斯特效应;当电极4从普通金属端口转变为铁磁金属端口时,将同时观测到电荷和自旋能斯特效应.研究发现,能斯特效应对于铁磁电极极化强度的依赖程度较弱,但对库仑排斥作用十分敏感.在量子点内和点间库仑排斥作用的影响下,自旋及电荷能斯特系数有望提高两个数量级.  相似文献   

17.
We have investigated the shot noise in the mesoscopic system composed of a quantum dot (QD) coupled to ferromagnetic terminals under the perturbation of ac fields. The shot noise has been derived using the nonequilibrium Green's function (NGF) technique to describe the spin polarization effect along with photon absorption and emission processes in the Coulomb blockade regime. We have examined the influence of spin polarization on the shot noise under the perturbation of ac fields in the nonadiabatic regime. The Coulomb blockade effect results in the modification of shot noise compared with the noninteracting case. The spin orientation contributes a spin valve effect for controlling electron tunnelling through this QD, and different resonant forms appear around the Coulomb blockade channel. The photon-assisted spin-splitting and spin-polarization effect contributes a photon-assisted spin valve to adjust the electron tunnelling current and shot noise. The spin-polarization effect varies the value of the Fano factor. However, it does not change the noise type from sub-Poissonian to super-Poissonian.  相似文献   

18.
M. Afshar  M. Hemati 《Physics letters. A》2018,382(48):3476-3482
We have demonstrated electronic configurations and magnetic properties of single Co adatom on benzene (Bz) molecule in the framework of relativistic density functional theory. A sequence of fixed spin moment (FSM) calculations were carried out with and without Coulomb repulsion (U). We have investigated that varying the strength of Coulomb repulsion results to different equilibrium positions for the Co adatom on benzene molecule. It was shown that inclusion of the on-site Coulomb repulsion in the Co 3d orbitals affects significantly the geometry of Co–Bz complex. We also found two stable low-spin and high-spin multiplicities for the complex. The nature of the high-spin configuration was explained according to the Hubbard electron–electron correlation in 3d shell of the Co adatom. Our FSM results indicate that the high-spin state is a global minimum in the presence of Hubbard parameter U. The relativistic spin–orbit coupling and using orbital polarization correction induce considerable orbital magnetism in both low and high spin states of the Co–Bz complex. We have also calculated magnetic anisotropy energies for two spin states and we found out that an out-of-plane magnetic orientation of Co adatom is more favorable in the low spin state whereas the Coulomb repulsion (U = 2 eV and U = 4 eV) predicts an in-plane magnetic orientation for Co adatom. Our findings can be implicitly taken into account for the extended system of added single Co atom on graphene.  相似文献   

19.
We evaluate the Coulomb drag current in two finite-length Tomonaga-Luttinger-liquid wires coupled by an electrostatic backscattering interaction. The drag current in one wire shows oscillations as a function of the bias voltage applied to the other wire, reflecting interferences of the plasmon standing waves in the interacting wires. In agreement with this picture, the amplitude of the current oscillations is reduced with increasing temperature. This is a clear signature of non-Fermi-liquid physics because for coupled Fermi liquids the drag resistance is always expected to increase as the temperature is raised.  相似文献   

20.
The coherent optical injection and temporal decay of spin and charge currents in semiconductor heterostructures is described microscopically, including excitonic effects, many-body Coulomb correlations, and the carrier LO-phonon coupling on the second-order Born-Markov level, as well as nonperturbative light-field-induced intraband and interband excitations. A nonmonotonic dependence of the currents on the intensities of the laser beams is predicted. Enhanced damping of the spin current relative to the charge current is obtained as a consequence of Coulomb scattering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号