首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Correlations between intervertebral disc degeneration and bone mass were investigated previously, but never on scoliotic patients. Using MRI measurements of intervertebral discs behavior and vertebral bone tomodensitometry, correlations between nucleus zone displacement within intervertebral discs and mechanical center migration within vertebral bodies were investigated in vivo on scoliotic patients.The protocol, performed on eleven scoliotic girls, was composed of a CT scan acquisition of apical and adjacent vertebrae followed by a MRI acquisition of the thoracolumbar spine. The displacement between the vertebral body centroid and inertia center was computed from the CT images and called the mechanical migration. The displacement between nucleus zones and vertebral body centroids was quantified from MRI and called the nucleus zone migration.For apical vertebrae, a significant correlation was found in the coronal plane (r = 0.766, p < 0.01), but not in the sagittal plane (r = -0.349, p > 0.05). For adjacent vertebrae, significant correlations were found in both coronal (r = -0.633, p < 0.05) and sagittal (r = -0.797, p < 0.01) planes. The nucleus zone migration occurred in the convexity of the curvature whereas the mechanical migration occurred in the concavity.Known secondary mechanical phenomenon of scoliosis was quantified using new parameters describing intervertebral discs and vertebral bodies. Further investigations should be performed to explain the mechanical evolution of scoliosis and to use these parameters in predictive criteria of scoliosis.  相似文献   

2.
The aim of the study was to implement a methodology to quantify in vivo and from magnetic resonance imaging (MRI) the 3D geometrical properties of intervertebral discs (IVDs) in early idiopathic scoliosis with small curves. MRI data were posttreated using a custom-made image processing software to semiautomatically determine the location of disc centres, the location of the nucleus pulposus (NP) and the ratio between the NP volume and the disc volume. MRI was performed in a clinical protocol involving 14 patients having an early idiopathic scoliosis. First, the 3D reconstruction errors were quantified using a reproducibility test (intraoperator and interoperator) in one IVD (L5-S1). The maximal errors in location were 0.79 mm in the frontal plane, 1.84 mm in the sagittal plane and 0.76 mm in the vertical plane. The maximal error in relative volume was 42%. Second, the nucleus migration and relative volume were quantified in discs T5-T6 to L5-S1. No significant relative volume variation was detected. Concerning the disc migration, no significant differences were found in the sagittal and axial planes. In the frontal plane, significant differences were observed at the apex of the scoliotic curvature when the Cobb angle was > or =20 degrees . This innovative study in early scoliosis showed reproducible preliminary results, and its application to improve diagnosis and follow-up will be established in an enlarged patient database.  相似文献   

3.
The aim of this study was to quantify from magnetic resonance imaging (MRI) the volume and hydration variation of the intervertebral disc in the lumbar spine before and after surgery in severe idiopathic scoliosis cases. MRI data were posttreated using a custom-made image processing software to semiautomatically derive volume properties of disc, annulus fibrosus and nucleus pulposus. The nucleus-disc volume ratio was also an indicator of the hydration level. The MRI that was performed in the clinical protocol concerned 28 patients with severe idiopathic scoliosis; four types of surgical instrumentations were used. The reliability of the three-dimensional reconstruction process was initially verified using an intraoperator reproducibility test. Original preoperative data on disc volume properties were then derived. Postoperative volume variations were quantified in discs below spine fusion, taking into account the level of arthrodesis and the disc location. It showed that the postoperative volume criteria increased significantly for nucleus, disc and nucleus-disc volume ratio and that some magnitude modulation could be conditioned by the location of surgical instrumentation. It tended to prove that the recovery of balanced physiological positioning and inherent biomechanical loads could induce a restored hydration of disc, which should favor the remodeling of free segments. This work was the first report to deal with the consequences of scoliosis surgery on subjacent disc in terms of volume and hydration properties. The clinical outcome will follow based on the patient cohort follow-up at 1 year after surgery.  相似文献   

4.
The value of apparent diffusion coefficient (ADC) measurements in intervertebral disc has been studied because ADC provides an estimate of free diffusion of unbound water and could be used as a quantitative tool to estimate degenerative changes. However, the challenging nature of diffusion imaging of spine and limited numbers of subjects in earlier studies has produced contradictory findings. We aimed to determine the relation between ADC and visual degenerative changes in lumbar intervertebral discs in a sufficiently large homogeneous study group. Lumbar spines of 228 volunteer middle-aged men were MR imaged at 1.5 T including anatomic and diffusion-weighted imaging. ADC values, T2 signal intensity and height, and width of the three lowest lumbar intervertebral discs were measured and disc degeneration visually graded. The calculated average ADC of 530 measured discs was 2.01×10−3 mm2/s±0.29 (±S.D.). The reduction in ADC between visually normal and moderately degenerated discs was 4%. Severely degenerated discs showed 5% larger ADC values than normal discs, presumably due to free water in cracks and fissures of those discs. T2 signal intensity of the disc was significantly correlated with the ADC values, whereas other measured parameters did not show correlation. There was no evident difference in ADC between the studied anatomic lumbar levels. Because there is considerable overlap between ADC values of normal and degenerated discs, we conclude that ADC measurements of intervertebral discs, at least with current technology, have limited clinical value.  相似文献   

5.

Purpose

The purpose was to study the effect of estrogen deficiency on contrast agent diffusion into intervertebral disc in a rat model.

Materials and Methods

Seven-month-old female Sprague–Dawley rats were used. Fourteen rats had ovariectomy, and nine rats had sham surgery. Magnetic resonance imaging (MRI) of sagittal midsection of lumbar spine was performed with a 1.5-T magnet. Dynamic MRI was performed after a bolus injection of Gd-DOTA (0.3 mmol/kg) through tail vein. Eight hundred images were acquired at 0.6 s per acquisition. Regions of interests were drawn over three discs per rat. Maximum enhancement (Emax) and enhancement slope (Eslope) were evaluated. MRI was carried out at baseline and 8 weeks postsurgery.

Result

All disc enhancements demonstrated an initial fast wash-in phase followed by a second slower wash-in phase. For initial wash-in phase, E1max and E1slope of all rats remained unchanged at the two time points. For second wash-in phase, E2max and E2slope of control rats remained unchanged, while with ovariectomized rats, E2max showed reduction at 8 weeks (4.5%±5.6%) compared to baseline (10.3%±6.3%, P=.037), and E2slope was lower at 8 weeks (0.015±0.017) than the baseline (0.029±0.022), although it was not statistically significant (P=.101).

Conclusion

Ovariectomy induced detectable decrease in second wash-in phase of contrast agent into lumbar disc.  相似文献   

6.

Objective

Magnetic resonance imaging (MRI) offers great potential as a sensitive and noninvasive technique for describing the alterations in mechanical properties, as shown in vitro on intervertebral disc (IVD) or cartilage tissues. However, in vivo, the IVD is submitted to complex loading stimuli. Thus, the present question focuses on the influence of the mechanical loading during an MRI acquisition on the relaxation times, magnetization transfer and diffusion parameters within the IVD.

Methods

An apparatus allowing the compression of isolated IVDs was designed and manufactured in acrylonitrile butadiene styrene. IVDs were dissected from fresh young bovine tail, measured for their thickness and submitted to compression just before the MRI acquisition. Six discs received 0% (platen positioned at the initial disc thickness), 5% (platen positioned at 95% of the initial disc thickness), 10%, 20% and 40% deformation. The MRI parameters were compared between the loading states using mean and standard deviation for T1 and T2, and matrix subtraction for Magnetization Transfer, fractional anisotropy and apparent diffusion coefficient.

Results

The compression of the IVD did not lead to any significant change of the MRI parameters, except for the diffusion that decreased in the direction of the compressive stress.

Discussion

This experimental in vitro study shows that multi-parametric MRI on isolated discs in vitro is not sensitive to compression or to the partial confined relaxation that followed the compression.  相似文献   

7.
Low back pain (LBP) is a costly and widely prevalent health disorder in the U.S. One of the most common causes of LBP is degenerative disc disease (DDD). There are many imaging techniques to characterize disc degeneration; however, there is no way to directly assess the material properties of the intervertebral disc (IVD) within the intact spine. Magnetic resonance elastography (MRE) is an MRI-based technique for non-invasively mapping the mechanical properties of tissues in vivo. The purpose of this study was to investigate the feasibility of using MRE to detect shear wave propagation in and determine the shear stiffness of an axial cross-section of an ex vivo baboon IVD, and compare with shear displacements from a finite element model of an IVD motion segment in response to harmonic shear vibration. MRE was performed on two baboon lumbar spine motion segments (L3–L4) with the posterior elements removed at a range of frequencies (1000–1500 Hz) using a standard clinical 1.5 T MR scanner. Propagating waves were visualized in an axial cross-section of the baboon IVDs in all three motion-encoding directions, which resembled wave patterns predicted using finite element modeling. The baboon nucleus pulposus showed an average shear stiffness of 79 ± 15 kPa at 1000 Hz. These results suggest that MRE is capable of visualizing shear wave propagation in the IVD, assessing the stiffness of the nucleus of the IVD, and can differentiate the nucleus and annulus regions.  相似文献   

8.
PURPOSE: Recent studies have proposed that magnetic resonance (MR) T1rho relaxation time is associated with loss of macromolecules. The depletion of macromolecules in the matrix of the intervertebral disc may be an initiating factor in degenerative disc disease. The purpose of this study was to test the feasibility of quantifying T1rho relaxation time in phantoms and intervertebral discs of healthy volunteers using in vivo MR imaging at 3 T. MATERIALS AND METHODS: A multislice T1rho spiral sequence was used to quantify T1rho relaxation time in phantoms with different agarose concentrations and in the intervertebral discs of 11 healthy volunteers (mean age=31.3 years; age range=23-60 years; gender: 5 females, 6 males). RESULTS: The phantom studies demonstrated the feasibility of using spiral imaging at 3 T. The in vivo results indicate that the median T1rho value of the nucleus (116.6+/-21.4 ms) is significantly greater (P<0.05) than that of the annulus (84.1+/-11.7 ms). The correlations between the age of the volunteers and T1rho relaxation time in the nucleus (r2=-0.82; P=0.0001) and the annulus (r2=-0.37; P=0.04) were significant. A trend of decreasing T1rho values from L3-4 to L4-5 to L5-S1 was evident. CONCLUSION: The results of this study suggest that in vivo T1rho quantification is feasible and may potentially be a clinical tool in identifying early degenerative changes in the intervertebral disc.  相似文献   

9.
A magnetic resonance method is described which provides good-quality field-mapping images of the spine, although the in vivo signals from red bone marrow of the vertebral bodies exhibit similar fractions of lipid and water protons with their chemical-shift difference of 3.4 ppm. The susceptibilities of bone marrow and intervertebral disks were examined in 20 cadaveric human spines, 9 healthy volunteers, and 9 patients with degenerative disk alterations. The influence of geometrical properties was studied in cylindrical spine phantoms of different size and contents with different susceptibility. The measurements reveal interindividual differences of the susceptibility of the intervertebral disks in healthy subjects. Three out of nine degenerated disks with low signal in T2-weighted spin-echo images showed irregularities of the field distribution within the nucleus pulposus.  相似文献   

10.
PurposeTo determine the clinical value of routine use of thin-section 3D MRI using 3D FSE sequences with a variable flip angle technique for internal derangements of the knee joint at 3 T.Method and MaterialsThirty-four knees in 34 patients suspected of having internal derangements of the knee joint were included. Following standard 2D MRI protocol including sagittal PDWI, T1WI and T2*WI, coronal fat-suppressed PDWI, and axial fat-suppressed PDWI with 3-4 mm thicknesses, fat-suppressed and water-excitation PDWI using 3D FSE sequences with a variable flip angle technique with 0.6 mm thickness were obtained in coronal plane and the three major planes with 1 mm thickness (3D MRI) was reformatted. The standard 2D MRI protocol and reformatted 3D MRI protocol (three sagittal 2D sequence images plus 3D MRI) were independently analyzed by two radiologists concerning presence or absence of lesions in the menisci, cartilage, and ligament. Interobserver agreements in both the MRI protocols were assessed by weighted-kappa coefficients. Regarding diagnostic accuracy, areas under the receiver operating characteristic curves (Az values) of both the MRI protocols were compared.ResultsThirty-eight meniscal lesions, 39 cartilage lesions, and 20 ligamentous lesions were surgically detected. Excellent interobserver agreements (kappa = 0.91–0.98) were seen in both the MRI protocols, with a slightly better tendency in the reformatted 3D MRI protocol. Average Az values in detection of the meniscal, cartilage, and ligamentous lesions were significantly higher in the reformatted 3D MRI protocol than in the standard 2D MRI protocol (p < 0.01 or p < 0.001).ConclusionRoutine use of reformatted thin-section 3D MRI using 3D FSE sequences with a variable flip angle technique may improve diagnostic accuracy and confidence in detection of internal derangements of the knee joint.  相似文献   

11.
ObjectiveThe complex anatomical structures of cerebellopontine angle (CPA) pose a unique challenge to diffusion weighted imaging (DWI). This study aimed to compare the clinical utility of the prototypic 2D turbo gradient- and spin echo-BLADE-DWI (TGSE-BLADE-DWI) with that of readout-segmented echo-planar DWI (RESOLVE-DWI) and single-shot echo-planar DWI (SS-EPI-DWI) to visualize CPA anatomic structures and identify CPA tumors.MethodsA total of 8 volunteers and 36 patients with pathological CPA tumors were enrolled to perform the three DWI sequences at 3 T. Scan time of TGSE-BLADE-DWI, RESOLVE-DWI and SS-EPI-DWI was 5 min 51 s, 5 min 15 s and 1 min 22 s, respectively. Subjective analysis, including visualization of anatomical structures, geometric distortion, ghosting artifacts, lesion conspicuity, diagnostic confidence, and overall image quality of the three DWI sequences were scored and assessed. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and apparent diffusion coefficient (ADC) of CPA tumors were measured and compared.ResultsA total of 39 lesions were identified, TGSE-BLADE-DWI detected all of them, RESOLVE-DWI 36 and SS-EPI-DWI 27. Significant differences were found in all the subjective parameters among the three DWI sequences (all p < 0.001). TGSE-BLADE-DWI was significantly better than RESOLVE-DWI in visualization of CPA anatomical structures, geometric distortion, ghosting artifacts, lesion conspicuity, diagnostic confidence, and overall image quality (all p < 0.01), and RESOLVE-DWI showed significantly superior performance than SS-EPI-DWI in all parameters (all p < 0.001). CNRs and ADCs were not significantly different among the three DWI sequences (p = 0.355, p = 0.590, respectively). No significant differences were detected between TGSE-BLADE-DWI SNR and RESOLVE-DWI SNR (p = 0.058), or TGSE-BLADE-DWI SNR and SS-EPI-DWI SNR (p = 0.155).ConclusionCompared with RESOLVE-DWI and SS-EPI-DWI, TGSE-BLADE-DWI minimized geometric distortions and ghosting artifacts and demonstrated an improved ability for depicting CPA tumors with better lesion conspicuity.SummaryGeometric distortions and ghosting artifacts are found at bone-air interfaces using conventional diffusion-weighted imaging (DWI), which is a challenge for imaging cerebellopontine angle (CPA) tumors. Our study validated that geometric distortions and ghosting artifacts were not present on 2D turbo gradient- and spin-echo-BLADE-DWI scans, making this technique useful for visualizing CPA anatomic structures and diagnosing CPA tumors.  相似文献   

12.

Purpose

Lesions close to the internal craniocervical ligaments are a common problem in patients with whiplash injuries. The aim of this study was to evaluate the morphology and visibility of these ligamentous structures with a new isotropic three-dimensional (3D) turbo-spin-echo (TSE) technique.

Materials and Methods

MR (MR) images of the cervical spine of 52 healthy subjects (27 women and 25 men; mean age=29 years; age range=18–40 years) were taken with a T2-weighted 3D TSE sequence with variable flip-angle distribution [SPACE (Sampling Perfection with Application optimized Contrasts using different flip-angle Evolution)] at 1.5 T (Magnetom Avanto, Siemens Erlangen, Germany). Two experienced musculoskeletal radiologists read the images independently on a 3D imaging and postprocessing workstation. The visibility and morphology of the alar ligaments were evaluated on a five-point scale, and inter-reader correlation was assessed with kappa statistics.

Results

Both alar ligaments were detected in all subjects. Twenty-eight (53.8%) of the alar ligaments could not be seen within one slice of the standard coronal imaging plane but could adequately be visualized in an oblique reconstruction adapted to the orientation of the ligaments on the axial slices. Inter-reader correlation for visibility on MR imaging (MRI) of the internal craniocervical ligaments was high (left+right side, kappa=0.95). Most (94%) alar ligaments presented symmetrically. In the axial plane, 60% were oriented neutral and 40% had a backward orientation. In the coronal plane, 67% were oriented caudocranially and 33% were oriented horizontally. The shape of the ligaments was parallel in half and was V-shaped in the other half. The alar ligaments had homogeneous low-signal intensity in 56% and heterogeneous low-signal intensity in 44%. The apical ligament of the dens was seen (excellent–good–moderate) in 61% (reader 1) and 52% (reader 2). The tectorial membranes and the transverse ligament of the atlas were shown (excellent–good) in all subjects.

Conclusions

MRI with acquisition of an isotropic SPACE technique allows high-resolution imaging of the craniocervical ligaments in all orientations. Reconstruction of the image data in the variable orientation of the alar ligaments allowed for excellent depiction within one slice such that partial volume artifacts that hamper image analysis can be eliminated.  相似文献   

13.

Purpose

The purpose of the study was to assess the usefulness of slice encoding for metal artifact correction (SEMAC) in 3.0-T magnetic resonance (MR) in minimizing metallic artifacts in patients with spinal prostheses.

Materials and Methods

Institutional review board approval and informed consent were obtained for this study. Twenty-seven spine MR scans were performed with metal artifact reduction SEMAC between May 2011 and July 2012 in patients with metallic devices. The MR scans were performed on a 3-T MR system (Achieva; Philips Healthcare, Best, the Netherlands) including SEMAC-corrected T2-weighted axial/sagittal images and two-dimensional fast spin echo (FSE) axial/sagittal images. The SEMAC-corrected images were compared to conventional T2-weighted FSE images. Two musculoskeletal radiologists qualitatively analyzed the images in terms of visualization of the pedicle, vertebral body, dural sac, intervertebral disc, intervertebral neural foramina, screws and metallic artifacts. The paired images were rated using a 5-point scale. P values less than .05 were considered to indicate statistically significant differences.

Results

The SEMAC-corrected MR images significantly reduced the metal-related artifacts. The T2-weighted images with SEMAC sequences enabled significantly improved periprosthetic visualizations of the pedicle, vertebral body, dural sac and neural foramina, with the exception of the intervertebral disc (P < .05). In addition, there was significant improvement in prosthesis visualization (P < .05).

Conclusion

MR images with SEMAC can reduce metal-related artifacts, providing improved delineation of the prosthesis and periprosthetic region. However, for the evaluation of the intervertebral disc, the SEMAC-corrected MR images showed no significant benefits.  相似文献   

14.
BackgroundDelayed gadolinium enhanced MRI of cartilage (dGEMRIC) is a quantitative method for assessment of glycosaminoglycan content in connective tissues. We hypothesize that the early diagnosis of degenerative changes in the temporomandibular joint could be diagnosed using dGEMRIC technique.PurposeTo test the compositional MRI technique, dGEMRIC, at 3 Tesla to diagnosis early the degenerative changes in the fibrocartilaginous disc of the temporomandibular joint (TMJ) in patients with temporomandibular disorders (TMD) and to compare the dGEMRIC index of patients to the healthy volunteers.MethodsSix volunteers (two men, four women; 20.8÷28.1 years) and eleven patients (22 TMJs, seven women, four men; 24÷54 years) were recruited for this prospective trial. Only patients with no morphological abnormality on MRI and without disc dislocations were included. Volunteers were used as a control group. The PD-weighted FSE sequence and the 3D GRE (DESS) sequence protocols were performed for morphological assessment. The Inversion recovery (IR) sequence was performed for T1 relaxation time measurements and intra-venous (IV) contrast agent administration was used according to the dGEMRIC protocol. T1 maps were calculated offline and ROIs were drawn on TMJ discs by a specialist trained in TMD disorders. Statistical evaluation was performed by ANOVA and correlations were calculated.ResultsThe difference between the dGEMRIC values in the TMJ articular discs of the patients and the volunteers was statistically significant (P = .019). After contrast agent administration the T1 values dropped in both groups. In patient group was the T1 drop stronger (−54% from initial pre-contrast value), while in control group was the T1 drop less pronounced (−46% from initial pre-contrast value).ConclusionsdGEMRIC seems to be a useful, compositional, quantitative method, suitable also for small joints, such as the articular disc of the TMJ. The results of the dGEMRIC index in the articular disc of the TMJ imply a lower GAG content in patients with TMJ disorders.  相似文献   

15.
While tremendous work has been performed to characterize degenerative disc disease through gross morphologic, biochemical, and histologic grading schemes, the development of an accurate and noninvasive diagnostic tool is required to objectively detect changes in the matrix with aging and disc degeneration. In the present study, quantitative magnetic resonance was used to determine if the quality of the nutritional supply to the intervertebral disc at various ages and levels of degeneration could be assessed through measurement of the apparent diffusion coefficients (ADCs). Modifications of the nucleus pulposus matrix content, specifically of water and glycosaminoglycan contents, with age and disc degeneration, were reflected in correlating changes in the ADCs. From unforced stepwise linear regression analyses, relations were established showing that decreases in glycosaminoglycan or water contents in the nucleus pulposus resulted in direct decreases in the ADCs. Relations obtained for the ADCs of the nucleus pulposus were direction dependent, in conformity with the anisotropic diffusion in the intervertebral discs. Changes in matrix integrity, as evidenced by the percentage of denatured collagen, were also detected in the nucleus pulposus with a low positive correlation to the ADC along the height of the disc and an inverse statistically significant regression to the ADC along the anterior to posterior axis of the disc. Correlations between the matrix content and integrity of the annulus fibrosus and its ADCs were not as evident, with only the ADC in the lateral direction of the disc of the anterior annulus fibrosus able to reflect changes in matrix content. The information obtained by the ADCs, particularly of the nucleus pulposus, can potentially be used in combination with quantitative T1, T2, and MT parameters to noninvasively obtain a quantitative assessment of the disc matrix composition and structural integrity.  相似文献   

16.
The purpose of this study was to develop a novel magnetic resonance imaging (MRI)-based modeling technique for measuring intervertebral displacements. Here, we present the measurement bias and reliability of the developmental work using a porcine spine model. Porcine lumbar vertebral segments were fitted in a custom-built apparatus placed within an externally calibrated imaging volume of an open-MRI scanner. The apparatus allowed movement of the vertebrae through pre-assigned magnitudes of sagittal and coronal translation and rotation. The induced displacements were imaged with static (T1) and fast dynamic (2D HYCE S) pulse sequences. These images were imported into animation software, in which these images formed a background ‘scene’. Three-dimensional models of vertebrae were created using static axial scans from the specimen and then transferred into the animation environment. In the animation environment, the user manually moved the models (rotoscoping) to perform model-to-‘scene’ matching to fit the models to their image silhouettes and assigned anatomical joint axes to the motion-segments. The animation protocol quantified the experimental translation and rotation displacements between the vertebral models. Accuracy of the technique was calculated as ‘bias’ using a linear mixed effects model, average percentage error and root mean square errors. Between-session reliability was examined by computing intra-class correlation coefficients (ICC) and the coefficient of variations (CV). For translation trials, a constant bias (β0) of 0.35 (± 0.11) mm was detected for the 2D HYCE S sequence (p = 0.01). The model did not demonstrate significant additional bias with each mm increase in experimental translation (β1Displacement = 0.01 mm; p = 0.69). Using the T1 sequence for the same assessments did not significantly change the bias (p > 0.05). ICC values for the T1 and 2D HYCE S pulse sequences were 0.98 and 0.97, respectively. For rotation trials, a constant bias (β0) of 0.62 (± 0.12)° was detected for the 2D HYCE S sequence (p < 0.01). The model also demonstrated an additional bias (β1Displacement) of 0.05° with each degree increase in the experimental rotation (p < 0.01). Using T1 sequence for the same assessments did not significantly change the bias (p > 0.05). ICC values for the T1 and 2D HYCE S pulse sequences were recorded 0.97 and 0.91, respectively. This novel quasi-static approach to quantifying intervertebral relationship demonstrates a reasonable degree of accuracy and reliability using the model-to-image matching technique with both static and dynamic sequences in a porcine model. Future work is required to explore multi-planar assessment of real-time spine motion and to examine the reliability of our approach in humans.  相似文献   

17.
Intervertebral disc (IVD) degeneration is a complex process characterized by biochemical and structural changes in both the nucleus pulposus and the anulus fibrosus. In this study, we were able to obtain in vivo magnetic resonance (MR) images of the rabbit spine, with several MR imaging (MRI) contrasts (ρ, T1 and T2). We quantified several parameters (T2, apparent diffusion coefficient, disc height and area) to differentiate between healthy and degenerative IVDs and to characterize the degeneration process. To our knowledge, there has not been any previous in vivo study of rabbit IVDs at high-field MRI (9.4 T).A custom radio frequency (RF) coil for 9.4 T was designed to match rabbit IVD morphology, to study the degeneration in vivo on a model of human lumbar disease. Our new probe, a custom half-birdcage-type coil, obtains the necessary exploration depth while meeting the requirements for signal homogeneity and sensitivity of the study. This design addresses some of the difficulties with constructing RF coils at high field strengths.  相似文献   

18.
The decay of a far wake and its turbulent fluctuations behind two thin discs of the same diameter D, oriented normal to the incident flow, have been studied using the Particle Image Velocimetry (PIV). The experimental study was carried out in a water flume (Re ≈ 2·105) with varying distances between the discs (L х = 4–8D) and their axes shift relative to each other (0, 0.5D and 1D). It is found that the velocity deficit behind two discs depends weakly on L x , and at L х > 40D, it becomes indistinguishable from the level of turbulent fluctuations of the incident flow. It is found that the decay of the average velocity deficit and its turbulent fluctuations in a wake of a tandem of discs can be described by the same analytical dependence with exponent–2/3 as for the wake decay of a single disc. However, at the same distance downstream, the value of deficit behind two discs is substantially higher than the corresponding value behind a single disc. Velocity fluctuations in a far wake behind a pair of discs depend weakly on longitudinal dimension L x , but at the same time, in contrast to the velocity deficit, their level does not differ significantly from the level of fluctuations behind a single disc.  相似文献   

19.
ObjectivesThe aim of this study was to use DKI to detect the microstructural change of the discs in matured normal rats.MethodsTotal 24 normal SD rats (12 males/12 females) underwent DWI/DKI and T2 sequences with a 3T MRI scanner to get the values of ADC, FA, MD, Da, Dr, MK, Ka and Kr. The discs were categorized using a five-grade degeneration grading system in the T2-images. The height of the discs and the parameters in DWI/DKI were measured to compare between the different grades and sexes. The histological images and the images of fiber tracking were also done in the discs.ResultsThere were 30 Grade 1 and 18 Grade 2 in the discs. Compared with Grade 1, decreased ADC, increased FA and MK values were observed in Grade 2 (P < 0.05). By the ROC analysis of grades of the discs, there was low diagnostic accuracy in ADC value, while FA and MK showed higher accuracy. In Grade 1, there were lower ADC value, lower Dr, higher MK, Ka and Kr in male's group than them in female's group. There were no differences in the parameters except the ADC value in the two sexes in Grade 2. The different microstructure of the normal discs in the male and female rats had been proved by the histological images and the images of fiber tracking.ConclusionDKI is a noninvasive and sustainable means to test the changes of intervertebral discs. The discs in Grade 2 were also found in the normal matured SD rat tails. The assessment of the grade of the discs in T2-images should be done before the experimental management. There was microstructural difference in the nucleus pulposus in the discs in Grade 1 and 2. FA and MK showed higher diagnostic accuracy. The laboratory rats should be the same sex because the microstructure of the normal discs weren't the same.  相似文献   

20.
《Current Applied Physics》2020,20(12):1321-1327
We investigated the thermal and optical characteristics of AgCu alloy disc (250 and 380 nm in diameter) arrays to produce an optical filter with low near infrared (NIR) transmittance, and compared their properties with those of Ag disc array. Unlike the Ag discs, the AgCu discs remained relatively stable with hillocks after annealing at 500 °C. The Ag and AgCu disc samples had similar transmittance characteristics, showing a global minimum at ~767 nm (for the 250 nm-disc samples) and at ~1081 nm (for the 380 nm-disc samples). Based on finite-difference time-domain (FDTD) simulations, the global minimum was related to localised surface plasmon resonance (LSPR). The Maxwell-Garnett model was employed to interpret the red-shift of the transmittance minima. The calculations showed that a mixture of agglomerated and stable Ag discs, resulting in different n and k values, would be responsible for the red-shift and an increase in the minimum transmittance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号