首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In strongly alkaline aqueous KOH solutions containing SiIV in large excess over AlIII, the kinetics of exchange of monomeric silicate with small acyclic aluminosilicate solute species is much more rapid than with either cyclic aluminosilicates or any all-silicate anions. Selective inversion recovery 29Si NMR studies of homogeneous solutions of stoichiometric composition 3.0 mol kg-1 of SiO2, 0.1 mol kg-1 of Al2O3, and 8.0 mol kg-1 of K2O in 60-75% D2O gave rate constants of 2.0 +/- 0.2 kg mol-1 s-1 and 17 +/- 4 s-1 for the forward and reverse reactions of monomeric silicate with (HO)3AlOSiOn(OH)(3-n)(n+1)- (n = 2 or 3) at 0 degree C. These rate constants are more than 10(4)-fold faster than those extrapolated from 60 to 90 degrees C for comparable reactions of silicate anions. The greater lability of acyclic aluminate centers relative to silicate is ascribed partly to the availability of HO- groups for condensation reactions on Al and mainly to the ease of expansion of the coordination number of AlIII beyond 4. The latter attribute is diminished when AlIII is constrained to be tetrahedral in cyclic structures. With respect to the mechanism of formation of zeolites from alkaline aqueous media, it is suggested that small, labile AlOSi units add rapidly to growing zeolitic structures "on demand", whereas the more kinetically inert cage or ring structures cannot. This would explain why a silicate or aluminosilicate structure that is dominant among solute species at equilibrium in the presence of a particular cation may bear little or no geometric relation to the zeolitic framework promoted kinetically by that same cation.  相似文献   

2.
Aluminum-27 NMR spectroscopy was used to characterize aqueous and methanolic alkaline solutions of tetramethylammonium (TMA) aluminosilicates. Aluminosilicate solutions have been prepared with different concentrations of silicon [0.577–1.24% (w/w)], aluminum [0.0022–0.239% (w/w)], methanol [0.0–0.70% (w/w)] and H2O [0.23–90% (w/w)]. All solutions contain the same ratio of Si/TMA = 1 and Si/Al molar ratios between 0.5 and 25.27Al NMR spectra of TMA aluminosilicate solutions are characterized by a variety of aluminosilicate species such as q1(Al1OSi), q2(Al2OSi), q3(Al3OSi) and q4(Al4OSi). Aluminum-27 NMR spectra of TMA aluminosilicate solutions indicate that considerable changes occurred by changing the Si/Al ratio. The distribution of aluminosilicate species was affected by the presence of the methanol and the method of mixing the silicate and aluminosilicate solutions. A methanolic aluminosilicate solution needs about twice the time required for an aqueous aluminosilicate solution to reach a steady state, i.e., the latter takes 36 h to reach steady state. Results with the same concentration of silicon and aluminum show that the formation and distribution of aluminosilicate species are strongly dependent on the solvent comprising the silicate and aluminate solutions.  相似文献   

3.
Deoxyribonucleic acid (DNA) is the genetic material for all living organisms, and as a nanostructure offers the means to create novel nanoscale devices. In this paper, we investigate the interaction of deoxyribonucleic acid inside single-walled carbon nanotubes. Using classical applied mathematical modeling, we derive explicit analytical expressions for the encapsulation of DNA inside single-walled carbon nanotubes. We adopt the 6–12 Lennard–Jones potential function together with the continuous approach to determine the preferred minimum energy position of the dsDNA molecule inside a single-walled carbon nanotube, so as to predict its location with reference to the cross-section of the carbon nanotube. An analytical expression is obtained in terms of hypergeometric functions which provides a computationally rapid procedure to determine critical numerical values. We observe that the double-strand DNA can be encapsulated inside a single-walled carbon nanotube with a radius larger than 12.30 ?, and we show that the optimal single-walled carbon nanotube to enclose a double-stranded DNA has radius 12.8 ?.  相似文献   

4.
29Si NMR Investigations on the Anion Structure of Crystalline Tetramethylammoniumaluminosilicates and -aluminosilicate Solutions The 29Si NMR spectra of crystalline tetramethylammonium (TMA) aluminosilicates with different Si/Al ratios exhibit up to 4 sharp signals with characteristic chemical shifts which can be assigned to the central Si atom of OSi(OSi)3?n(OAl)n building units of double four-ring (DFR) aluminosilicate anions. The number and distributions of the Al atoms in the DFR framework can be derived from the signal intensities in connection with the results of the trimethylsilylation method [1]. A good agreement of the results of both methods has been found. The DFR can exist as monomeric unit or can be connected to polymeric structures by SiOAl bridges, but no information can be obtained about this question by the 29Si NMR spectra. The investigation of the TMA aluminosilicate solutions by 29Si NMR and TMS method [1] show that stable aluminosilicate anions exist in these solutions. The structure of these aluminosilicate anions is different from the structure of the crystalline TMA aluminosilicates obtained from the solutions.  相似文献   

5.
Abstract  The condensation of silicic acid with aluminate in alkaline environment, the essential reaction of zeolite synthesis, is studied using the density functional theory, with the hybrid functional B3LYP in conjunction with the 6-311++G(d, p) basis set. The Si(OH)4 monomer and Al(OH)4 anion are used as the reactant models to study the condensation pathway in basic solution. The solvent effect is included by the COSMO-RS model. The study includes the complete geometry optimization and frequency calculation of reactants, products, reaction intermediates, and transition states, as well as the calculation of the activation energy of the different pathways involved. The intrinsic reaction coordinate method is used to verify the reactant and product corresponding to the transition state. The calculation shows that the formation of Si–O–Al linkage can proceed via two possible reaction pathways. The first is a single-step process, in which the formation of SiO···Al bond and removal of water are synchronous, with the activation energy of 83.7 kJ/mol. The second is a stepwise route, in which the AlO···Si bond is first formed to give a 5-coordianted Si intermediate, and then water is removed to yield a dimer aluminosilicate, with the barriers of 62.7 and 69.3 kJ/mol for the two steps, respectively. Index Abstract   Theoretical study of formation mechanism of aluminosilicate in the synthesis of zeolites Guo-Feng Jiao, Min Pu, Biao-Hua Chen   相似文献   

6.
Synthesis and Anion Constitution of Crystalline Tetramethylammonium-aluminosilicates and -aluminosilicate Solutions Crystalline tetramethylammonium aluminosilicates with molar constitutions of wN(CH3)4OH · xSiO2 · y Al2O3 · zH2O and w = 1 to 1.2; x = 1; y = 0.02 to 0.5; z = 8.1 to 9.7 has been obtained from mixtures of diluted TMA aluminate and TMA silicate solutions with different molar Si/Al ratios by concentration and cooling down of the mixtures. Investigations of the TMA aluminosilicates by means of trimethylsilylation method show that the structure of the TMA aluminosilicates consists of double fouring units in analogy to the aluminum free TMA silicates. The arrangement of the Al atoms in the double four-rings agrees in general with Loewenstein's rule and leads to five distinct types of double four-rings with different Al content and Si? Al distribution. By the methods used in this study no distinction can be made between monomeric or polymeric arrangements of the double four-ring units. The existence of aluminosilicate anions in aqueous solutions is discussed.  相似文献   

7.
The uptake of pristine single-walled carbon nanotubes into macrophage-like cells has been studied using the nanotubes' intrinsic near-infrared fluorescence. Macrophage samples that have been incubated in growth media containing suspended single-walled nanotubes show characteristic nanotube fluorescence spectra. The fluorescence intensities increase smoothly with incubation time and external nanotube concentration. Near-infrared fluorescence microscopy at wavelengths above 1100 nm provides high contrast images indicating localization of nanotubes in numerous intracellular vesicles. Nanotube uptake appears to occur through phagocytosis. Population growth of macrophage cultures is unaffected by exposure to single-walled nanotube concentrations of ca. 4 mug/mL for up to 96 h.  相似文献   

8.
Single-walled carbon nanotubes(SWNTs)have a high adsorption ability and nanoscale interactions.Cellulose trisphenylcarbamates possess high enantioseparation ability in high-performance liquid chromatography(HPLC).Single-walled carbon nanotubes mixed with cellulose trisphenylcarbamate are coated on the silica gel as chiral stationary phases and higher enantioseparation factors are obtained.After a single-walled carbon nanotube is linked to the 6-position of cellulose 2,3-bisphenylcarbamate,its enantioseparation resolution increases compared to that of the cellulose trisphenylcarbamate.It is the first time that SWNTs have been applied to enantioseparation.The results indicate that the single-walled carbon nanotubes are good promoters of chiral recognition.This method can be used to improve the enantioseparation efficiency of the polysaccharide chiral stationary phases.  相似文献   

9.
不同结构碳纳米管的电磁波吸收性能研究   总被引:14,自引:0,他引:14  
研究了单壁、多壁碳纳米管(聚团状、阵列状)以及未纯化与纯化后碳纳米管在2~18 GHz范围内的电磁波吸收性能. 通过测定不同结构碳纳米管粉体的介电常数以及磁导率, 得到损耗因子及衰减常数大小顺序为: 阵列状多壁碳纳米管>原生聚团状多壁碳纳米管>纯化聚团状多壁碳纳米管>原生单壁碳纳米管>纯化后单壁碳纳米管. 相比多壁碳纳米管, 单壁碳纳米管衰减常数随频率变化较小, 且具有较宽的吸收峰. 模拟计算和实验测试结果都表明, 碳纳米管/聚合物复合材料具有优良的电磁吸波性能.  相似文献   

10.
Purification of single-walled carbon nanotubes using conjugated polymers to selectively disperse either semiconducting or metallic nanotubes is effective and has received significant attention. However, the interaction between the conjugated polymer and the nanotube surface is very strong, making it difficult to remove the adsorbed polymer. Here, we report a poly(carbazole-co-terephthalate) polymer that is not only selective for semiconducting carbon nanotubes but can also be largely removed from the nanotube surface via irradiation with UV light. Irradiation of the polymer-nanotube dispersion causes degradation of ester linkages in the polymer backbone, effectively cutting the polymer into fragments that no longer bind strongly to the nanotube surface. Characterization of the electronic nature of the samples was carried out via the combination of absorption, Raman, and fluorescence spectroscopy. In addition, thermogravimetric analysis allowed determination of the amount of polymer left on the nanotube surface after irradiation and indicated that a large proportion of the polymer is removed. The reported methodology opens new possibilities for purification of semiconducting single-walled carbon nanotubes and their isolation from the polymeric dispersant.  相似文献   

11.
Vertically aligned TiO(2) nanotube and Al(2)O(3) nanopore arrays have been obtained by pattern guided anodization with uniform concave depths. There are some studies about the effect of surface curvature on the growth of Al(2)O(3) nanopores. However, the surface curvature influence on the development of TiO(2) nanotubes is seldom studied. Moreover, there is no research about the effect of heterogeneous concave depths of the guiding patterns on the anodized TiO(2) nanotube and Al(2)O(3) nanopore characteristics, such as diameter, growth direction, and termination/bifurcation. In this study, focused ion beam lithography is used to create concave patterns with heterogeneous depths on flat surfaces and with uniform depths on curved surfaces. For the former, bending and bifurcation of nanotubes/nanopores are observed after the anodization. For the latter, bifurcation of a large tube into two smaller tubes occurs on concave surfaces, while termination of existing tubes occurs on convex surfaces. The growth direction of all TiO(2) nanotubes is perpendicular to the local surface and thus is different on different facets of the same Ti foil. At the edge of the Ti foil where two facets meet, the nanotube growth direction is bent, resulting in a large stress release that causes the formation of cracks.  相似文献   

12.
We present (29)Si, (27)Al, and (67)Zn NMR evidence to show that silicate ions in alkaline solution form complexes with zinc(II) (present as zincate, Zn(OH)(3)(-) or Zn(OH)(4)(2-)) and, concomitantly, with aluminate (Al(OH)(4)(-)). Zincate reacts with monomeric silicate at pH 14-15 to form [(HO)O(2)Si-O-Zn(OH)(3)](4-) and with dimeric silicate to produce [HO-SiO(2)-O-SiO(2)-O-Zn(OH)(3)](6-). The exchange of Si between these free and Zn-bound sites is immeasurably fast on the (29)Si NMR time scale. The cyclic silicate trimer reacts relatively slowly and incompletely with zincate to form [(HO)(3)Zn{(SiO(3))(3)}](7-). The concentration of the cyclic trimer becomes further depleted because zincate scavenges the silicate monomer and dimer, with which the cyclic trimer is in equilibrium on the time scale of sample preparation. Identification of these zincate-silicate complexes is supported by quantum chemical theoretical calculations. Aluminate and zincate, when present together, compete roughly equally for a deficiency of silicate to form [(HO)(3)ZnOSiO(2)OH](4-) and [(HO)(3)AlOSiO(2)OH](3-) which exchange (29)Si at a fast but measurable rate.  相似文献   

13.
Nanotubes are important "building block" materials for nanotechnology, but a synthesis process for short (sub-100-nm) solid-state nanotubes with structural order and monodisperse diameter has remained elusive. To achieve this goal, it is critical to possess a definitive mechanistic framework for control over nanotube dimensions and structure. Here we employ solution-phase and solid-state characterization tools to elucidate such a mechanism, particularly that governing the formation of short ( approximately 20 nm), ordered, monodisperse (3.3 nm diameter), aluminum-germanium-hydroxide ("aluminogermanate") nanotubes in aqueous solution. Dynamic light scattering (DLS), vibrational spectroscopy, and electron microscopy show that pH-control of chemical speciation in the aluminogermanate precursor solution is important for producing nanotubes. A combination of DLS, UV-vis spectroscopy, and synthesis variations is then used to study the nanotube growth process as a function of temperature and time, revealing the initial condensation of amorphous nanoparticles of size approximately 6 nm and their transformation into ordered aluminogermanate nanotubes. The main kinetic trends in the experimental data can be well reproduced by a two-step mathematical model. From these investigations, the central phenomena underlying the mechanism are enumerated as: (1) the generation (via pH control) of a precursor solution containing aluminate and germanate precursors chemically bonded to each other, (2) the formation of amorphous nanoscale ( approximately 6 nm) condensates via temperature control, and (3) the self-assembly of short nanotubes from the amorphous nanoscale condensates. This mechanism provides a model for controlled low-temperature (<373 K) assembly of short, monodisperse, structurally ordered nanotube objects.  相似文献   

14.
(27)Al NMR spectroscopy can be used for study of coordination and solvation in both aqueous and non-aqueous solutions. Various octahedral and tetrahedral aluminium complexes have been proved to exist in solution by (1)H and (27)Al NMR spectroscopy. (27)Al nuclear magnetic resonance (NMR) spectroscopy also can be used to determine thermodynamic properties of complexes in the solution. The formation of [Al(OH)(4-n)(CH(3)OH)(n)]((n-1)+) (n=1, 2, 3 and 4) species through the reaction of aluminate anion with methanol has been investigated by (27)Al NMR spectroscopy. (27)Al NMR spectra reveal evidence for Al bound to one, two, three and four CH(3)OH, the production of aluminate species is affected by the MeOH/H(2)O. Results obtained from 2D EXSY experiments clearly confirm there are exchanges among the species.  相似文献   

15.
A novel yet facile synthesis pathway has been developed for the design of hierarchically structured macro-mesoporous aluminosilicates with high aluminum content at tetrahedral sites using a single molecular bifunctional alkoxide (sec-BuO)(2)-Al-O-Si(OEt)(3) precursor. The use of carboxylate ligands and a highly alkaline media slow down the polymerization rate of the aluminum alkoxide functionality, thus permitting the preservation of the intrinsic Al-O-Si linkage. The hierarchically structured porous aluminosilicate materials present an unprecedented low Si/Al ratio close to 1. Heat treatment applied to the synthesized material seems to favor the incorporation of aluminum into tetrahedral position (intraframework aluminum species). The macro-mesoporosity was spontaneously generated, without the use of any external templating agent, by the hydrodynamic flow of the solvents released during the rapid hydrolysis and condensation processes of this double alkoxide. This method results in materials with an open array of interconnected macrochannels. The synthesized aluminosilicate materials with tailorable macro-mesoporous hierarchy and very high Al content at tetrahedral position hold huge promise in various applications as catalysts, catalysts supports, or adsorbents.  相似文献   

16.
栾慧敏  雷驰  马野  吴勤明  朱龙凤  徐好  韩世超  朱秋艳  刘小龙  孟祥举  肖丰收 《催化学报》2021,42(4):563-570,中插5-中插12
高硅沸石具有优异的热稳定性、水热稳定性、大的微孔体积、高表面积和均匀的微孔孔道,因而广泛应用于催化领域.然而,高硅沸石的合成往往需要使用有机结构导向剂,不但增加了沸石合成成本,而且还产生了大量的三废排放.为了解决这个问题,我们发展了在无有机导向剂存在条件下采用沸石晶种诱导合成沸石的方法,但是该方法合成的沸石产物骨架富铝...  相似文献   

17.
Aqueous trivalent aluminum (Al) ions and their oligomers play important roles in diverse areas, such as environmental sciences and medicine. The geometries of octahedral Al(H(2)O)(6)(3+) and tetrahedral Al(OH)(4)(-) species have been studied extensively. However, structures of intermediate hydrolysis products of the Al(III) ion, such as the penta-coordinated Al(OH)(2+) species, which exists at pH values ranging from 3.0 to 4.3, and their mode of formation have been poorly understood. Here, we present that a trigonal bipyramidal Al(OH)(H(2)O)(4)(2+) structure is formed in aqueous solution and how this monomeric species dimerizes to a dinuclear [(H(2)O)(4)Al(OH)(2)Al(H(2)O)(4)](4+) complex in aqueous solution. The Gibbs free energy change calculations indicate that the formation of the dinuclear complex is preferred over the existence of two single trigonal bipyramidal Al(OH)(H(2)O)(4)(2+) species in aqueous solution. This study captures the solution dynamics and proton transfer in the oligomerization reactions of penta-coordinated Al(OH)(2+) species in aqueous solution.  相似文献   

18.
We review recent experimental studies on single-walled carbon nanotubes on substrates using tip-enhanced near-field optical microscopy (TENOM). High-resolution optical and topographic imaging with sub 15 nm spatial resolution is shown to provide novel insights into the spectroscopic properties of these nanoscale materials. In the case of semiconducting nanotubes, the simultaneous observation of Raman scattering and photoluminescence (PL) is possible, enabling a direct correlation between vibrational and electronic properties on the nanoscale. So far, applications of TENOM have focused on the spectroscopy of localized phonon modes, local band energy renormalizations induced by charge carrier doping, the environmental sensitivity of nanotube PL, and inter-nanotube energy transfer. At the end of this review we discuss the remaining limitations and challenges in this field. Figure Tip-enhanced Raman scattering and photoluminescence spectroscopy with sub 15 nm spatial resolution provides novel insights into the electronic and vibronic properties of single-walled carbon nanotubes.  相似文献   

19.
The hierarchical structure of semidilute suspensions of single-walled carbon nanotubes in polymeric matrices, studied by the use of ultrasmall and small angle neutron scattering, indicates an aggregate size that is independent on both nanotube concentration and polymer matrix and a mesh within the floc that becomes slightly denser with increasing nanotube concentration. The number of clusters grows linearly with concentration of nanotubes. These structural parameters suggest that the interactions between the flocs dictate the concentration-dependent elastic strength scaling of the network, with the absolute values of the specific elastic strength being inversely related to the percolation threshold.  相似文献   

20.
As the aluminate base [LiAl(TMP)(2)(iBu)(2)] 1 displays halogen tolerance towards substituted aromatics, 4-halo-anisoles have been ortho-aluminated and electrophilically quenched to form synthetically useful multi-heterohalogenated anisoles, with the Al intermediates along the route structurally defined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号