首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The water consumption characteristics and water use efficiency (WUE) of poplar (Populus simonii) were investigated under the condition of three different soil water regimes, which were 70%, 55% and 40% of field capacity (FC), respectively. The results showed that water potential, water content, photosynthetic rate, WUE of leaves, and plant growth rate decreased significantly with reduction in soil water content. At the level of adequate and medium soil water content, rapid growth and biomass accumulation in poplar occurred during May and June, whereas this phenomenon occurred only during May under severe soil drought condition. Total water consumption and biomass growth were the greatest under adequate soil water condition, decreased under medium soil drought condition, and lowest under severe soil drought condition. Total WUE was the highest under medium soil water condition and lowest under severe soil condition. Changing patterns of water consumption for daily rate, every 10-day rate, and month rate were quite different under these three soil water regimes. For all these three treatments, the highest monthly water consumption rate occurred during July and June. The highest water consumption over a 10-day period was during in the second 10 days of July, the first 10 days of July, and the last 10 days of June for these three treatments, respectively. The day for the highest water consumption in the medium and severe drought treatments occurred 1 or 2 months earlier than the adequate soil water treatment. The daily time for the greatest water consumption was different throughout the life span of poplar under these soil water levels. According to these results, we concluded that poplar did not have the characteristics of drought-resistance plants, and we do not recommend that this tree species be planted over a wider range of the Loess Plateau in China.  相似文献   

2.
Different statistical methods and path analysis were used to study the relationship between leaf water use efficiency (WUE) and physio-biochemical traits for 19 wheat genotypes, including photosynthesis rate (Pn), stomatal conductance (gs), transpiration rate (Tr), intercellular concentration of carbon oxide (Ci), leaf water potential (Ψw), leaf temperature, wax content, leaf relative water content (RWC), rate of water loss from excised-leaf (RWL), peroxidase (POD) and superoxide dismutase (SOD) activities. The results showed that photosynthesis rate, stomatal conductance and transpiration rate were the most important leaf WUE variables under rainfed conditions. Based on the results of five statistical analyses, it is reasonable to assume that high leaf WUE wheat under the rained could be obtained by selecting breeding materials with high photosynthesis rate, low transpiration rate and stomatal conductance.  相似文献   

3.
4.
Drought is a worldwide problem, seriously influencing plant (crop) productivity. Wheat is a stable food for 35% of the world population, moreover about 60% of land area on the globe belongs to arid and semi-arid zone. Wheat drought resistance is a multi-gene-controlling quantitative character and wheat final production in field is realized mainly by physiological regulation under the condition of multi-environmental factor interaction. Exploring drought resistance physiological mechanisms for different wheat genotypes is of importance to finding new drought resistance gene resources and conventional breeding and the basis for wheat drought resistance biotechnological breeding and platform. Osmotic adjustment regulation is the main component for physiological machinery of wheat drought resistance. By pot-cultivating experiments, investigation of osmotic adjustment comparison for 10 wheat genotypes at soil water deficits (75% FC, 55% FC, 45% FC, respectively), was conducted. The main results were as followed: (1) K+ content in 10 wheat genotypes at three levels of soil water stress and at the same soil water deficit was very different. Five of these 10 wheat genotypes had higher K K+ content under the condition of 75% FC. (2) Five of these 10 wheat genotypes possessed greater soluble sugar content at 55% FC soil water level. (3) Proline (Pro) content in five wheat genotypes was higher at 75% FC. (4) Five of these 10 wheat genotypes had lower malondialdehyde (MDA) content at 45% FC at seedling stage. Osmotic adjustment of wheat different genotypes was discussed in terms of different content of osmotic solutes.  相似文献   

5.
6.
7.
An experiment was conducted in two varieties, rosea and alba, of Catharanthus roseus plants with two watering treatments viz., 100 and 60% of field capacity, to understand the effects of water deficit on early growth, biomass allocation and photosynthetic pigment responses. We found that there were significant differences in early growth, dry matter accumulation and pigment variations between the two varieties. The root length, shoot length, total leaf area, fresh and dry weights were significantly reduced under water stress treatments. There was a significant reduction in the photosynthetic pigment contents in both the varieties. The rosea variety was more affected due to water deficit when compared to alba variety.  相似文献   

8.
Drought is a worldwide problem, seriously influencing plant (crop) productivity. Wheat is a stable food for 35% of the world population, and moreover, about 60% of land area on the globe belongs to arid and semiarid zone. Wheat drought resistance is a multi-gene controlling quantitative character and wheat final production in field is realized mainly by physiological regulation under the condition of multi-environmental factor interaction. Exploring drought resistance physiological mechanisms for different wheat genotypes is of importance to finding new drought resistance gene resources and conventional breeding, and the basis for wheat drought resistance biotechnological breeding and platform. Photosynthesis is the main component for physiological machinery of wheat assimilates conversion and wheat production. Investigation on photosynthetic characteristics of different wheat genotypes at soil water deficits also has other implications for refine physiological regulation of photosynthesis in fields and field management of crops in arid and semiarid areas. By pot-cultivating experiments, investigation of photosynthesis for 10 wheat genotypes at seedling stage and tillering stage at soil water deficits (75%FC, 55%FC and 45%FC, respectively) was conducted. The main results were as followed: developmental stages influenced wheat photosynthesis greatly and tillering stage played more roles; there were significant difference in the main photosynthetic parameters, photosynthesis rate (Photo), stomatal conductance (Cond) and transpiration rate (Tr), among 10 wheat genotypes; general photosynthesis and drought resistance in different wheat genotypes was related much to their domesticated origin soil water environment and selected generations and there was a photosynthetic threshold effect in terms of different wheat genotypes at soil water deficits.  相似文献   

9.
The puckering transition of the proline residue with trans and cis prolyl peptide bonds was explored by optimizations along the torsion angle chi1 of the prolyl ring using quantum-chemical methods in water. By analyzing the potential energy surfaces and local minima in water, it is observed that the puckering transition of the proline residue proceeds from a down-puckered conformation to an up-puckered one and vice versa through the transition state with an envelope form having the N atom at the top of the envelope and not a planar one, as seen in the gas phase, although the backbone conformations are different in the gas phase and in water. The barriers to the puckering transition DeltaGup-->down are estimated to be 3.12 and 3.00 kcal/mol for trans and cis conformers at the B3LYP/6-311++G(d,p) level of theory in water, respectively, which are about 1.7 kcal/mol higher than those in the gas phase. Out of 2197 prolines from the 241 high-resolution PDB chains, four transition-state-like structures with the envelope ring puckering are identified. Three of them have the trans prolyl peptide bonds and one has the cis one. The favorable or steric interactions by neighboring residues may be responsible for the stabilization of these transition-state-like ring structures in the proteins.  相似文献   

10.
酪氨酸、脯氨酸和组氨酸的示波极谱连续测定   总被引:8,自引:0,他引:8  
提出了用示波极谱法连续测定酪氨酸 ( Tyr)、脯氨酸 ( Pro)、组氨酸( His) 3种氨基酸的新方法。在 p H9.2硼酸缓冲溶液中 ,上述 3种氨基酸与镍发生配位反应 ,用示波极谱仪进行单扫描时 ,出现 3组灵敏度和分辨率均很高的二阶导数波谱 ,峰电位分别为 :Tyr - 1 .0 4 V,Pro - 1 .2 0 V,His - 1 .34V。酪氨酸、脯氨酸、组氨酸的峰电流与浓度分别在 2 .0× 1 0 -5~ 3.0× 1 0 -4 mol/L,3.2× 1 0 -6~ 2 .2× 1 0 -4 mol/L,4.0× 1 0 -5~ 2 .5× 1 0 -4 mol/L的范围内呈线性关系。该法已用于复方氨基酸注射液中酪氨酸、脯氨酸、组氨酸含量的测定。  相似文献   

11.
Derivatives of 4-hydroxyproline with a series of hydrophobic groups in well-defined orientations have been tested as catalysts for the aldol reactions. All of the modified proline catalysts carry out the intermolecular aldol reaction in water and provide high diastereoselectivity and enantioselectivity. Modified prolines with aromatic groups syn to the carboxylic acid are better catalysts than those with small hydrophobic groups (1a is 43.5 times faster than 1f). Quantum mechanical calculations provide transition structures, TS-1a(water) and TS-1f(water), that support the hypothesis that a stabilizing hydrophobic interaction occurs with 1a.  相似文献   

12.
Through 2-year field experiments, 7 wheat genotypes were better in their field yield. These 7 wheat genotypes and other 3 wheat species, which are being popularized on a large scale in different locations of China, were selected as experimental materials for the sake of measuring their difference in WUE and production and comparing their relationship at soil water deficits, future more, providing better drought resistance lines and theoretical guide for wheat production and practices and exploring anti-drought physiological mechanisms of different wheat genotypes. Under the condition of 3 soil–water–stress treatments (75% field capacity (FC), 55% FC, 45% FC, named level 1, level 2 and level 3, respectively), pot experiments for them were conducted and the related data were collected from their life circle. The main results were as followed: (1) according to the selected soil stress levels, water use efficiency (WUE) of 10 different wheat genotypes was divided into two groups (A and B); group A included genotypes 2, 3, 4, 5, 6, 7, 8, whose WUE decreased basically from level 1 to level 3 and reached individual peak of WUE at level 1; Group 2 included genotypes 1, 9, 10, whose WUE reached their individual peak at level 2; (2) based on total water consumption through all life circle, genotypes 1, 4, 8, 9 had lower water consumption (TWC) at level 1, genotypes 2, 3, 5, 6, 7 lower TWC at level 2, genotype 10 lower TWC at level 3; (3) at level 1, genotypes 2, 3, 4, 5, 6, 7, 8 had higher grain weight of single spike (GWSS), genotypes 1, 9, 10 better GWSS at level 2, which was in good line with individual WUE of different wheat genotypes; (4) by analyzing the indexes related to examining cultivars, it was found that genotypes 1, 2, 3, 4, 5, 6, 9, 10 had longer plant length (PL), spike length (SL), bigger grain number (GN) except genotypes 7 and 8 at level 1, RL was in better line with genotypes 1, 2, 3, 8, 9, 10, but not in the other genotypes at level 1.  相似文献   

13.
14.
A simple enantioselective HPLC method was developed for measuring carfentrazone‐ethyl enantiomers. The separation and determination was accomplished on an amylose tris[(S)‐α‐methylbenzylcarbamate] (Chiralpak AS) column using n‐hexane/ethanol (98:2, v/v) as mobile phase at a flow rate of 1.0 mL/min with UV detection at 248 nm. The effects of mobile‐phase composition and column temperature on the enantioseparation were discussed. The accuracy, precision, linearity, LODs, and LOQ of the method were also investigated. LOD was 0.001 mg/kg in water, 0.015 mg/kg in soil and wheat, with an LOQ of 0.0025 mg/kg in water and 0.05 mg/kg in soil and wheat for each enantiomer of carfentrazone‐ethyl. SPE was used for the enrichment and cleanup of soil, water, and wheat samples. Recoveries for two enantiomers were 88.4–106.7% with RSDr of 4.2–9.8% at 0.1, 0.5, and 1 mg/kg levels from soil, 85.8–99.5% with the RSDr of 4.4?9.6% at 0.005, 0.025, and 0.05 mg/kg levels from water, and from wheat the recoveries were 86.3?91.3% with RSDr below 5.0% at 0.2, 0.5, and 1 mg/kg levels. This method could be used to identify and quantify the carfentrazone‐ethyl enantiomers in food and environment.  相似文献   

15.
Results from infrared photodissociation (IRPD) spectroscopy and kinetics of singly hydrated, protonated proline indicate that the water molecule hydrogen bonds preferentially to the formally neutral carboxylic acid at low temperatures and at higher temperatures to the protonated N-terminus, which bears the formal charge. Hydration isomer populations obtained from IRPD kinetic data as a function of temperature are used to generate a van't Hoff plot that reveals that C-terminal binding is enthalpically favored by 4.2-6.4 kJ/mol, whereas N-terminal binding is entropically favored by 31-43 J/(mol K), consistent with a higher calculated barrier for water molecule rotation at the C-terminus.  相似文献   

16.
17.
The valence and core level photoelectron spectra of glycine, proline, and methionine in the gas phase have been investigated by VUV and soft X-ray radiation. The outer valence band photoemission spectra are similar to previously reported He I spectra, although relative peak intensities are different due to the different photon energy. We extended the spectral range to include the inner valence region. The carbon, nitrogen, and oxygen 1s as well as the sulfur 2p core level spectra of these amino acids have been measured and the states identified. Valence band spectra of proline have been recorded as a function of temperature, and they provide information about the relative populations of the lowest energy conformers.  相似文献   

18.
Jianjun Li 《Tetrahedron letters》2010,51(18):2434-2437
Catalyzed by proline triflate, benzoxanthenes were obtained in good yields from the condensation of naphthols, aldehydes, and 1,3-dicarbonyl compounds in water. A possible mechanism of this reaction is proposed.  相似文献   

19.
Combustion of wheat straw incorporating TiO2, CuO and MnO2 was investigated by means of thermal analysis carried out at 20 °C/min in the temperature range from 50 °C to 900 °C. Combustion characteristic indexes had been put forward to describe wheat straw combustion characteristics. All the results showed that the catalysis of the catalysts to the wheat straw combustion had been embodied in facilitation of the volatile matters release from wheat straw, which reduced the temperature of the maximum combustion rate, and the relative active sequence of catalysts to the ignition characteristic could be improved remarkably. The catalysis of different catalysts to the Devolatilization Index could be described as follows: MnO2 > TiO2 > CuO, and the relative active sequence of catalysts to the Combustion Characteristic Index could be described as follows: CuO > TiO2 > MnO2.  相似文献   

20.
The formation of the lanthanide (La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Lu) complexes with proline and hydroxyproline has been investigated by potentiometric methods as well as by a turbidimetric one which has provided some additional conclusions. It has been found that 11 and a slight amount of 21 complexes are formed. The deviation from the typical course of the formation function is discussed. It is suggested that the perturbations of complex formation in the systems are caused by hydrolysis. The stability constants of the complexes are reported.
Potentiometrische Untersuchungen an Lanthanid-Komplexen von Prolin und Hydroxyprolin
Zusammenfassung Die Bildung von Lanthanid-Komplexen (La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Lu) mit Prolin und Hydroxyprolin wurde potentiometrisch und mit Hilfe von Trübungsmessungen untersucht. Es wurde festgestellt, daß sich Komplexe der Zusammensetzung 11 und in kleiner Menge auch 21 bilden. Die Abweichung von typischem Verlauf der Bildungskurven wurde untersucht. Es wurde dabei festgestellt, daß für die Störungen in der Komplexbildung die Hydrolyse verantwortlich ist. Die Stabilitätskonstanten wurden bestimmt.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号