首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Luo EC  Ling H  Dai W  Yu GY 《Ultrasonics》2006,44(Z1):e1507-e1509
In this paper, an experimental study of the effect of the resonator shape on the performance of a traveling-wave thermoacoustic engine is presented. Two different resonators were tested in the thermoacoustic-Stirling heat. One resonator is an iso-diameter one, and the other is a tapered one. To have a reasonable comparison reference, we keep the same traveling-wave loop, the same resonant frequency and the same operating pressure. The experiment showed that the resonator shape has significant influence on the global performance of the thermoacoustic-Stirling heat engine. The tapered resonator gives much better performance than the iso-diameter resonator. The tapered resonator system achieved a maximum pressure ratio of about 1.3, a maximum net acoustical power output of about 450 W and a highest thermoacoustic efficiency of about 25%.  相似文献   

2.
Ling H  Luo E  Dai W 《Ultrasonics》2006,44(Z1):e1511-e1514
Thermoacoustic prime movers can generate pressure oscillation without any moving parts on self-excited thermoacoustic effect. The details of the numerical simulation methodology for thermoacoustic engines are presented in the paper. First, a four-port network method is used to build the transcendental equation of complex frequency as a criterion to judge if temperature distribution of the whole thermoacoustic system is correct for the case with given heating power. Then, the numerical simulation of a thermoacoustic-Stirling heat engine is carried out. It is proved that the numerical simulation code can run robustly and output what one is interested in. Finally, the calculated results are compared with the experiments of the thermoacoustic-Stirling heat engine (TASHE). It shows that the numerical simulation can agrees with the experimental results with acceptable accuracy.  相似文献   

3.
高新强  沈俊  和晓楠  唐成春  戴巍  李珂  公茂琼  吴剑峰 《物理学报》2015,64(21):210201-210201
本文借助计算流体力学软件, 对复合磁制冷机进行整机数值模拟分析. 以复合磁制冷机为建模原形, 分别计算了主动式磁制冷循环以及复合磁制冷循环. 利用模型计算分析了利用系数, 工作频率对主动式磁制冷的制冷效果影响, 同时模拟计算了不同相位角、不同频率下的复合磁制冷机的制冷效果, 计算得到适合复合磁制冷循环的最佳匹配相位角. 模拟计算结果对后续实验台的设计搭建有很好的指导作用.  相似文献   

4.
This communication presents a thermodynamic analysis and assessment of a Freon fluid Rankine cycle cooling system. The system consists of two subsystems—Rankine engine (RE) power cycle and a vapour compression (V-C) refrigeration cycle. The heat engine subsystem consists of a boiler, turbine, condenser and a feed pump while the cooling subsystem consists of a mechanical compressor, condenser, evaporator and an expansion valve. A number of working fluid combinations for the RE cycle and V-C cycle subsystems have been chosen on the basis of their thermodynamic properties and their suitability judged in terms of the performance parameters, namely, the thermal efficiency of the power cycle and the coefficient of performance (COP) of the refrigeration cycle. A regenerative heat exchanger (RHE) is incorporated in the RE cycle to improve the cycle efficiency and achieve energy conservation.The effects of various operation parameters, namely, component temperatures, adiabatic expansion/compression efficiencies and effectiveness of the RHE on the overall COP have been assessed. It is found that R114 + R22 give the best overall system performance and the presence of the RHE improves the system COP significantly. The effect of V-C cycle condenser temperature is more pronounced as compared to that of the RE cycle condenser and similarly the effect of evaporator temperature in the V-C cycle is more pronounced as compared to that of the boiler in the Rankine cycle subsystem.  相似文献   

5.
A thermoacoustic-Stirling heat engine: detailed study   总被引:1,自引:0,他引:1  
A new type of thermoacoustic engine based on traveling waves and ideally reversible heat transfer is described. Measurements and analysis of its performance are presented. This new engine outperforms previous thermoacoustic engines, which are based on standing waves and intrinsically irreversible heat transfer, by more than 50%. At its most efficient operating point, it delivers 710 W of acoustic power to its resonator with a thermal efficiency of 0.30, corresponding to 41% of the Carnot efficiency. At its most powerful operating point, it delivers 890 W to its resonator with a thermal efficiency of 0.22. The efficiency of this engine can be degraded by two types of acoustic streaming. These are suppressed by appropriate tapering of crucial surfaces in the engine and by using additional nonlinearity to induce an opposing time-averaged pressure difference. Data are presented which show the nearly complete elimination of the streaming convective heat loads. Analysis of these and other irreversibilities show which components of the engine require further research to achieve higher efficiency. Additionally, these data show that the dynamics and acoustic power flows are well understood, but the details of the streaming suppression and associated heat convection are only qualitatively understood.  相似文献   

6.
Since 1979, long-life, reliable heat-powered sorption refrigeration systems have been developed for spacecraft use at the Jet Propulsion Laboratory (JPL). JPL has successfully built and tested a series of cryogenic sorption refrigeration systems for spacecraft sensor cooling and is presently assembling a −263°C (10K) hydride sorption refrigerator, which will fly on the Space Shuttle in 1994. With the addition of novel regenerative heating techniques, this same technology has more recently been applied to design high efficiency, ground-based adsorption heat pumps. Using actual sorption isotherm data and detailed analytic thermal computer models, analysis has predicted that the cooling and heating COPs will be significantly better than for any other single stage, heat-powered heat pump. Specifically the cooling COP (COPc) with the new regenerative system using ammonia is predicted to be as high as about 1.16. Recent tests on a single carbon sorbent canister compressor have been performed with R22, R134a, and ammonia. Transient thermal response of the sorption compressor has compared well with computer predictions. With ammonia, the total amount of average cooling from the 0.51 kg bed of carbon has been measured to be about 1038 Btu h−1 (304 W) for a 6 min full cycle including both heating and cooling.  相似文献   

7.
Thermoacoustic refrigeration is an emerging cooling technology which does not rely for in its operation on the use of any moving parts or harmful refrigerants. This technology uses acoustic waves to pump heat across a temperature gradient. The temperature gradient forms across the ends of a porous body, called the stack, enclosed in a resonator. The vast majority of thermoacoustic refrigerators to date have used electromagnetic loudspeakers to generate the acoustic input. In this paper, the design, construction, operation, and modeling of a piezo-driven thermoacoustic refrigerator are detailed. The performance of the refrigerator is significantly enhanced by coupling the acoustic driver with an elastic structure, referred to as a dynamic magnifier. Proper selection of the magnifier parameters can increase the magnitude of the pressure oscillations across the stack, and consequently the temperature difference. The magnified refrigerator demonstrates the effectiveness of piezoelectric actuation in moving 0.3 W of heat across a 10 °C temperature difference with an input power of 7 W. All the theoretical predictions are validated against data from experimental prototypes. The developed theoretical and experimental tools can serve as invaluable means for the design and testing of piezo-driven thermoacoustic refrigerator configurations.  相似文献   

8.
基于先前报道的旋转内磁体式小型室温磁制冷系统,系统采用了新的双层同心嵌套式Halbach磁体组,开展了钆工质的制冷温跨与制冷量的实验研究。采用新的双层Halbach磁体组后,磁体组轴线处平均磁场强度由0.3?1.2 T提升至0.06?1.40T。在回热器两端绝热保温的工况下,采用新磁体组的系统在相似频率和利用系数下性能显著提升,并在1.25 Hz的运行频率下获得19.8K的制冷温跨。在系统引入高低温换热器的条件下,设定回热器高温端温度为27.5℃时,室温磁制冷机在7K制冷温跨下获得10W制冷量,工质比制冷量约47W·kg-1,并在1.7 K的制冷温跨下获得了50 W制冷量。  相似文献   

9.
We propose a three-terminal heat engine based on semiconductor superlattices for energy harvesting. The periodicity of the superlattice structure creates an energy miniband, giving an energy window for allowed electron transport. We find that this device delivers a large power, nearly twice than the heat engine based on quantum wells, with a small reduction of efficiency. This engine also works as a refrigerator in a different regime of the system's parameters. The thermoelectric performance of the refrigerator is analyzed, including the cooling power and coefficient of performance in the optimized condition. We also calculate phonon heat current through the system and explore the reduction of phonon heat current compared to the bulk material. The direct phonon heat current is negligible at low temperatures, but dominates over the electronic at room temperature and we discuss ways to reduce it.  相似文献   

10.
文中对简化的热声网络法、T型传输线网络法以及传输矩阵法进行了比较讨论。采用简化的热声网络法对几种可能的制冷流程进行了分析 ,并确定出了可能高效工作的制冷方案。最后基于传输矩阵法对一种行波热声制冷机进行了分析和热力设计 ,得到该制冷机较优的结构参数。当制冷温度为 - 2 3℃时 ,其 COP可达 2 .86 ,相对卡诺热效率为 5 7%。  相似文献   

11.
The preceding paper [J. Acoust. Soc. Am. 112, 1414-1422 (2002)] derives the propagation equation for sound in an inert gas-condensing vapor mixture in a wet-walled pore with an imposed temperature gradient. In this paper the mass, enthalpy, heat, and work transport equations necessary to describe the steady-state operation of a wet-walled thermoacoustic refrigerator are derived and presented in a form suitable for numerical evaluation. The requirement that the refrigerator operate in the steady state imposes zero mass flux for each species through a cross section. This in turn leads to the evaluation of the mass flux of vapor in the system. The vapor transport and heat transport are shown to work in parallel to produce additional cooling power in the wet refrigerator. An idealized calculation of the coefficient of performance (COP) of a wet-walled thermoacoustic refrigerator is derived and evaluated for a refrigeration system. The results of this calculation indicate that the wet-walled system can improve the performance of thermoacoustic refrigerators. Several experimental and practical questions and problems that must be addressed before a practical device can be designed and tested are described.  相似文献   

12.
An irreversible Ericsson refrigeration cycle model is established, in which multi-irreversibilities such as finite-rate heat transfer, regenerative loss, heat leakage, and the efficiency of the regenerator are taken into account. Expressions for several important performance parameters, such as the cooling rate, coefficient of performance (COP), power input, exergy output rate, entropy generation rate, and ecological function are derived. The influences of the heat leakage and the time of the regenerative processes on the ecological performance of the refrigerator are analyzed. The optimal regions of the ecological function, cooling rate, and COP are determined and evaluated. Furthermore, some important parameter relations of the refrigerator are revealed and discussed in detail. The results obtained here have general significance and will be helpful in gaining a deep understanding of the magnetic Ericsson refrigeration cycle.  相似文献   

13.
用有限时间热力学方法分析实际回热式布雷顿制冷机的性能特性,以制冷率和制冷系数为优化目标,优化了高低、温侧换热器和回热器的热导率分配以及工质和热源间的热容率匹配,并采用数值计算分析了各参数值对最优性能的影响特点.所得结果对工程制冷系统设计有一定的指导意义。  相似文献   

14.
文章详细描述了针对低温真空泵用的紧凑型两级G-M制冷机的实验系统和测试方法;试验测试了不同的蓄冷材料,尤其是磁性蓄冷材料来提高制冷机性能;在一种结构十分紧凑的两级G-M制冷机上,在12K获得了4W的制冷量,最低制冷温度为7.3K。文中还对该制冷机在没有吸附装置的情况下做了对比实验研究,有利于扩展G-M制冷机的用途。  相似文献   

15.
热声发动机驱动的脉管制冷机是一种完全无运动部件的低温制冷机,具有非常好的应用前景,本文介绍了本实验室在这方面取得的最新进展。首先我们对驻波热声发动机进行了改进设计,提高了其驱动压比,用氦气作为工质最大压比达到了1.15。在此基础上我们用其驱动同轴双向进气小孔型脉管制冷机,通过调整热声发动机的振荡频率,使之与脉管达到匹配,最终达到了84.3K的最低制冷温度,这也是目前用驻波热声发动机驱动脉管所达到的最低制冷温度。同时,在此实验过程中,一些抑制跳频的方法也得到了实验验证。  相似文献   

16.
高性能太阳能固体吸附式制冷与供热联合循环研究   总被引:3,自引:0,他引:3  
以电加热器为热驱动源,对所提出的太阳能供热与制冷联合循环的复合机系统进行了实际测试及性能分析。实验结果表明,供热与制冷联合循环的复合机装置,能有效地应用于太阳能为驱动源的固体吸附式制冷装置之中,并在制冷的同时对外供热,系统的总能利用得到了较大的提高,为太阳能制冷技术的有效利用作出了积极的探索。  相似文献   

17.
依据热力学非对称理论对脉冲管制冷机冷端的热力学过程进行分析 ,对脉冲管制冷机制冷功率的提高提出了改进方案 ,搭建了单级低频大功率脉冲管制冷机的实验台 ,在实验中首次采用新型的填料烧结型换热器作为脉冲管的冷头 ,对这种换热器的效率在不同实验条件下进行了计算 ,并通过实验验证了这种新型换热器在脉冲管制冷机中应用的可行性。实验表明 :改进冷端换热器是提高脉冲管制冷机制冷效率的关键问题。在使用烧结换热器的单级脉冲管制冷机实验台上 ,采用输出功率 3k W的压缩机在 80 K时得到了 35W的制冷量 ,在效率上属国内领先水平。  相似文献   

18.
基于前人提出的利用船舶内燃机排气废热的吸附式制冷系统系统的设计思想,文中致力于应用在吸附床中的单元冷管的研究,进行了一种用于船舶吸附式制冷系统的单元冷管的结构设计、工质对选择等,并实验分析和研究了添加可膨胀石墨的吸附单元冷管的循环特性,文中研究为今后的单元和系统设计提供了一定的实践指导。  相似文献   

19.
Miwa M  Sumi T  Biwa T  Ueda Y  Yazaki T 《Ultrasonics》2006,44(Z1):e1527-e1529
We built and tested a double-loop thermoacoustic cooler consisting of an engine-loop, a branch resonator, and a cooler-loop. The cooling power of 6.4 W was obtained at the cooling temperature of 0 degrees C, when the input heat power of 416 W was supplied to the engine-loop. We measured the acoustic power and found that the output power emitted from the engine-loop was 12 W, and that the input acoustic power entering the cooler-loop was 6 W.  相似文献   

20.
Approximately 50% of residential energy use in the U.S. is for space heating and cooling. The most popular type of system installed in U.S. houses is a central air-circulating system combining a natural-gas-fired direct-air-heating furnace and an electric-driven vapor compression cooling system. Natural-gas-driven heat pump technology offers considerable benefits over these existing technologies including a reduction in energy use, improved environmental impact, and reduced investment in electric power plant construction. However, over the past 30 years, more than 100 major natural-gas-driven heat pump development projects have been undertaken without a currently successful product. These past projects have focused on engine-driven vapor compression refrigeration cycles and liquid sorption refrigeration cycles. New solid sorption technology offers significant advantages over these engine and liquid sorption technologies. The fundamental advantages of solid sorption refrigeration technology in natural gas residential heat pumps are presented and the societal benefits over existing residential systems discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号