首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
High-resolution N 1s and O 1s photoelectron spectra (PES) of NO are presented together with spectra of the subsequent Auger decay. The PES are analyzed by taking spin-orbit splitting of the (2)Π ground state into account providing detailed information on equilibrium distances, vibrational energies, and lifetime widths of the core-ionized states. In the Auger electron spectra (AES) transitions to five metastable dicationic final states are observed, with two of them previously unobserved. A Franck-Condon analysis of the vibrational progressions belonging to these transitions provides detailed information on the potential-energy curves of the dicationic final states as well as on the relative Auger rates. The present calculations of the potential-energy curves of NO(2+) agree well with the experimental results and allow an assignment of the two hitherto unresolved Auger transitions to excited states of NO(2+), C(2)Σ(+)and c(4)Π.  相似文献   

2.
The inner-shell excitation and decay of the CO molecule have been studied in electron impact experiments. The dipole-forbidden transition (1sσc)−1(2pπ) 3Π has been characterized by angular resolved electron energy loss spectroscopy and its decay via the measurement of resonant Auger spectra. The contribution of the (1sσc)−1(2pπ) 3Π state to the CO resonant Auger spectrum in the region of the “spectator transitions” has been isolated and the population of CO+ quartet final states has been observed.  相似文献   

3.
The technique of Auger-photoelectron coincidence spectroscopy (APECS) is described and illustrated with a case study of the Cu(100) 3p and M23VV spectra. APECS offers many advantages over the conventional singles spectroscopy such as isolating overlapping spectral features, reducing secondary electron background, and revealing new decay modes. In the coincidence Cu Auger spectra discussed here, the multiplet structure of the quasi-atomic 3d8 Auger final state is clearly observed, as well as different intensities for the multiplet components for the p1/2 and p3/2 transitions. Furthermore, the spectra reveal evidence for a Coster-Kronig decay channel for 3p1/2 core holes, and illustrate that the sum of the Auger electron and photoelectron kinetic energies is conserved. Possible technical improvements that can increase the counting efficiency are also discussed.  相似文献   

4.
We report on an experimental and theoretical investigation of x-ray absorption and resonant Auger electron spectra of gas phase O(2) recorded in the vicinity of the O 1s-->sigma(*) excitation region. Our investigation shows that core excitation takes place in a region with multiple crossings of potential energy curves of the excited states. We find a complete breakdown of the diabatic picture for this part of the x-ray absorption spectrum, which allows us to assign an hitherto unexplained fine structure in this spectral region. The experimental Auger data reveal an extended vibrational progression, for the outermost singly ionized X (2)Pi(g) final state, which exhibits strong changes in spectral shape within a short range of photon energy detuning (0 eV>Omega>-0.7 eV). To explain the experimental resonant Auger electron spectra, we use a mixed adiabatic/diabatic picture selecting crossing points according to the strength of the electronic coupling. Reasonable agreement is found between experiment and theory even though the nonadiabatic couplings are neglected. The resonant Auger electron scattering, which is essentially due to decay from dissociative core-excited states, is accompanied by strong lifetime-vibrational and intermediate electronic state interferences as well as an interference with the direct photoionization channel. The overall agreement between the experimental Auger spectra and the calculated spectra supports the mixed diabatic/adiabatic picture.  相似文献   

5.
We report on theoretical Auger electron kinetic energy distribution originated from sequential two-step Auger decays of molecular double core-hole (DCH) state, using CH(4), NH(3), and H(2)CO molecules as representative examples. For CH(4) and NH(3) molecules, the DCH state has an empty 1s inner-shell orbital and its Auger spectrum has two well-separated components. One is originated from the 1st Auger transition from the DCH state to the triply ionized states with one core hole and two valence holes (CVV states) and the other is originated from the 2nd Auger transition from the CVV states to quadruply valence ionized (VVVV) states. Our result on the NH(3) Auger spectrum is consistent with the experimental spectrum of the DCH Auger decay observed recently [J. H. D. Eland, M. Tashiro, P. Linusson, M. Ehara, K. Ueda, and R. Feifel, Phys. Rev. Lett. 105, 213005 (2010)]. In contrast to CH(4) and NH(3) molecules, H(2)CO has four different DCH states with C1s(-2), O1s(-2), and C1s(-1)O1s(-1) (singlet and triplet) configurations, and its Auger spectrum has more complicated structure compared to the Auger spectra of CH(4) and NH(3) molecules. In the H(2)CO Auger spectra, the C1s(-1)O1s(-1) DCH → CVV Auger spectrum and the CVV → VVVV Auger spectrum overlap each other, which suggests that isolation of these Auger components may be difficult in experiment. The C1s(-2) and O1s(-2) DCH → CVV Auger components are separated from the other components in the H(2)CO Auger spectra and can be observed in experiment. Two-dimensional Auger spectrum, representing a probability of finding two Auger electrons at specific pair of energies, may be obtained by four-electron coincidence detection technique in experiment. Our calculation shows that this two-dimensional spectrum is useful in understanding contributions of CVV and VVVV states to the Auger decay of molecular DCH states.  相似文献   

6.
The Auger electron spectrum of water vapour has been recorded and analyzed. For the analysis, an approximate formula for calculating the intensities of the Auger electron lines is derived. It is shown, that the calculated intensities along with theoretical energies of the Auger transitions account well for the observed spectrum. In particular, new assignments in terms of transitions to triplet final states are suggested.  相似文献   

7.
8.
To get further insight into the CH2BrCl site-selective fragmentation previously observed upon inner-shell ionization, we have performed high-resolution Br 3d and Cl 2p Auger and spin-orbit resolved Br 3d Auger spectra, and studied the dissociation properties of the CH2BrCl2+ dication formed at threshold by means of threshold electron pair-ion coincidence measurements. The key point is that the origin of site-specific bond breaking is found in the Auger decay itself, as it preferentially populates selected dication states. Whereas the predominance of the C-Br bond breaking is observed in both threshold and inner-shell studies, no signature of selective C-Cl rupture is reported for the dication formed at threshold.  相似文献   

9.
The first paper describing a series of systematic investigations of the chemical shifts in Auger electron spectra from various free molecules is presented. Excitation is performed by means of a fine focus electron beam. The Auger electrons are retarded in a four component lens system and recorded at high resolution in a new multidetector system placed in the focal plane of the ESCA instrument. A calibration procedure against the KL2L3 Auger electron line of Ne is described. The first study concerns Auger electron line shifts for sulfur in some small molecules and the results are compared to the corresponding chemical shifts in the core photoelectron spectra. A formalism based on a transition potential model is briefly presented which takes account of the relaxation energies involved in Auger transitions as well as in single photoionization.  相似文献   

10.
11.
The valence character of O 1s-->Rydberg excited O2 is investigated by means of participator Auger decay spectroscopy, performed at selected photon energies across the K-shell resonance region, and by means of partial ion yield x-ray absorption spectroscopy. For several of the excitation energies studied, the authors find substantial sigma*(4Sigmau-, 2Sigmau-) valence character being mixed with nssigma and npsigma (4Sigmau-, 2Sigmau-) Rydberg states. An experimental indication of a coupling between the channels associated with quartet and doublet ion cores is considered and discussed. New spectroscopic constants are derived for the singly ionized X 2Pig state of O2 based on the observation of at least 20 vibrational sublevels.  相似文献   

12.
The Auger spectra of ethylene and acetylene have been calculated by a method including electron correlation at the ab initio level. Explicit assignments are given for both spectra. The results show that correlation effects leading to a breakdown of the two-hole picture for the final states of the Auger process are important in most parts of the spectra.  相似文献   

13.
The decay processes of core-valence doubly excited states near the N K edge of NO have been studied using electron spectroscopy. Electron yields measured as a function of photon energy and kinetic energy enable the clear identification of atomic Auger lines associated with the dissociation of doubly excited states. The atomic Auger lines exhibit Doppler profiles, allowing the entire reaction scheme of such dissociation processes to be determined.  相似文献   

14.
The CO Auger electron spectrum has been re-investigated by means of ab initio MO LCAO calculations using a combined SCF CI procedure. The CI comprises internal and semi-internal contributions to the final double-hole Slate wave-functions. In particular, the latter contributions are found to be highly significant both with respect to energies and intensities of the Auger transitions. In order to compare with the experimental spectra, the intensities of the transitions have also been calculated using a simple one-center model.  相似文献   

15.
We study theoretically the ultrafast nonlinear optical response of quantum well excitons in a perpendicular magnetic field. We address the role of many-body correlations originating from the electron scattering between Landau levels (LL). In the linear optical response, the processes involving inter-LL transitions are suppressed provided that the magnetic field is sufficiently strong. However, in the nonlinear response, the Auger processes involving inter-LL scattering of two photoexcited electrons remain unsuppressed. We show that Auger scattering plays a dominant role in the coherent exciton dynamics in strong magnetic fields. We perform numerical calculations for the third-order four-wave-mixing (FWM) polarization, which incorporate the Auger processes nonperturbatively. We find that inter-LL scattering leads to a strong enhancement of FWM signal and to oscillations at negative time delays. These oscillations represent quantum beats between optically inactive two-exciton states related to each other via Auger processes.  相似文献   

16.
The application of coincidence detection techniques produces a dramatic increase in the information obtained from particle and photon scattering studies. A clear illustration of this is given by Auger Photoelectron Coincidence Spectroscopy (APECS). By coincident detection of the ejected photoelectron and the resulting Auger electron during x-ray excited Auger spectroscopy, it is possible to distinguish the true origin of peaks and satellites within the Auger spectra. For example, it becomes possible to separate standard Auger processes from those occurring in conjunction with Coster-Kronig transitions and from those either followed or preceded by shake-off or shake-up transitions. In addition, the technique often allows the separation of overlapping series of Auger peaks, thus permitting the study of individual elements within compounds and alloys. These possibilities will be illustrated primarily by reference to APECS studies of 3d transition metal elements.  相似文献   

17.
Studies of valence bands and core levels of solids by photoelectron spectroscopy are described at length. Satellite phenomena in the core level spectra have been discussed in some detail and it has been pointed out that the intensity of satellites appearing next to metal and ligand core levels critically depends on the metal-ligand overlap. Use of photoelectron spectroscopy in investigating metal-insulator transitions and spin-state transitions in solids is examined. It is shown that relative intensities of metal Auger lines in transition metal oxides and other systems provide valuable information on the valence bands. Occurrence of interatomic Auger transitions in competition with intraatomic transitions is discussed. Applications of electron energy loss spectroscopy and other techniques of electron spectroscopy in the study of gas-solid interactions are briefly presented.  相似文献   

18.
We report a new theoretical procedure for calculating Auger decay transition rates including effects of core-hole excited-state dynamics. Our procedure was applied to the normal and first resonant Auger processes of gas-phase water and compared to high-resolution experiments. In the normal Auger decay, calculated Auger spectra were found to be insensitive to the dynamics, while the repulsive character of the first resonant core-excited state makes the first resonantly excited Auger decay spectra depend strongly on the dynamics. The ultrafast dissociation of water upon O(1s)-->4a(1) excitation was analyzed and found to be very sensitive to initial vibrational distortions in the ground state which furthermore affect the excitation energy. Our calculated spectra reproduce the experimental Auger spectra except for the Franck-Condon vibrational structure which is not included in the procedure. We found that the Auger decay of OH and O fragments contributes to the total intensity, and that the contribution from these fragments increases with increasing excitation energy.  相似文献   

19.
Radiative, Auger and predissociation decay modes of muonic lithium-hydrogen molecule, Liμh, (h = p, d or t is a hydrogen isotope) are considered. Results obtained for the corresponding reaction rates indicate that predissociation is a dominating decay mode for h = p, d while Auger decay dominates for h = t. The calculated conversion coefficient is significantly larger than that for helium muonic molecule and ranges between 37 and 42 (on the basis of one electron) depending on isotope composition of the molecule. Reaction rates for rotational 1 → 0 transitions in Liμh and Heμh due to inner Auger process are also calculated.  相似文献   

20.
Vibrationally resolved spectra have been obtained for the lowest-lying cationic states X (2)B(1), A (2)A(1), and B (2)B(2) of the water molecule reached after participator resonant Auger decay of core-excited states. The angular distribution has been measured of the first four vibrational components of the X state in the photon energy regions including the O 1s-->4a(1) and the O 1s-->2b(2) core excitations, and for different portions of the vibrational envelope of the B state in the photon energy region including the O 1s-->2b(2) core excitation. For the X state, a large relative spread in beta values of the different vibrational components is observed across both resonances. For the B state, a very different trend is observed for the high binding energy side and the low binding energy side of the related spectral feature as a function of photon energy. A theoretical method based on the scattering K matrix has been used to calculate both the photoabsorption spectrum and the beta values, by taking both interference between direct and resonant photoemission and vibrational/lifetime interference into account. The numerical results show qualitative agreement with the trends detected in the experimental values and explain the conspicuous variations of the beta values primarily in terms of coupling between direct and resonant photoemission by interaction terms of different sign for different final vibrational states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号