首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhou HC  Su W  Achim C  Rao PV  Holm RH 《Inorganic chemistry》2002,41(12):3191-3201
High-nuclearity Mo[bond]Fe[bond]S clusters are of interest as potential synthetic precursors to the MoFe(7)S(9) cofactor cluster of nitrogenase. In this context, the synthesis and properties of previously reported but sparsely described trinuclear [(edt)(2)M(2)FeS(6)](3-) (M = Mo (2), W (3)) and hexanuclear [(edt)(2)Mo(2)Fe(4)S(9)](4-) (4, edt = ethane-1,2-dithiolate; Zhang, Z.; et al. Kexue Tongbao 1987, 32, 1405) have been reexamined and extended. More accurate structures of 2-4 that confirm earlier findings have been determined. Detailed preparations (not previously available) are given for 2 and 3, whose structures exhibit the C(2) arrangement [[(edt)M(S)(mu(2)-S)(2)](2)Fe(III)](3-) with square pyramidal Mo(V) and tetrahedral Fe(III). Oxidation states follow from (57)Fe M?ssbauer parameters and an S = (3)/(2) ground state from the EPR spectrum. The assembly system 2/3FeCl(3)/3Li(2)S/nNaSEt in methanol/acetonitrile (n = 4) affords (R(4)N)(4)[4] (R = Et, Bu; 70-80%). The structure of 4 contains the [Mo(2)Fe(4)(mu(2)-S)(6)(mu(3)-S)(2)(mu(4)-S)](0) core, with the same bridging pattern as the [Fe(6)S(9)](2-) core of [Fe(6)S(9)(SR)(2)](4-) (1), in overall C(2v) symmetry. Cluster 4 supports a reversible three-member electron transfer series 4-/3-/2- with E(1/2) = -0.76 and -0.30 V in Me(2)SO. Oxidation of (Et(4)N)(4)[4] in DMF with 1 equiv of tropylium ion gives [(edt)(2)Mo(2)Fe(4)S(9)](3-) (5) isolated as (Et(4)N)(3)[5].2DMF (75%). Alternatively, the assembly system (n = 3) gives the oxidized cluster directly as (Bu(4)N)(3)[5] (53%). Treatment of 5 with 1 equiv of [Cp(2)Fe](1+) in DMF did not result in one-electron oxidation but instead produced heptanuclear [(edt)(2)Mo(2)Fe(5)S(11)](3-) (6), isolated as the Bu(4)N(+)salt (38%). Cluster 6 features the previously unknown core Mo(2)Fe(5)(mu(2)-S)(7)(mu(3)-S)(4) in molecular C(2) symmetry. In 4-6, the (edt)MoS(3) sites are distorted trigonal bipramidal and the FeS(4) sites are distorted tetrahedral with all sulfide ligands bridging. M?ssbauer spectroscopic data for 2 and 4-6 are reported; (mean) iron oxidation states increase in the order 4 < 5 approximately 1 < 6 approximately 2. Redox and spectroscopic data attributed earlier to clusters 2 and 4 are largely in disagreement with those determined in this work. The only iron and molybdenum[bond]iron clusters with the same sulfide content as the iron[bond]molybdenum cofactor of nitrogenase are [Fe(6)S(9)(SR)(2)](4-) and [(edt)(2)Mo(2)Fe(4)S(9)](3-)(,4-).  相似文献   

2.
The complexes [Cp*RuCl((i)Pr(2)PSX)] (X = pyridyl, quinolyl) react directly with alcohols ROH (R = Me, Et, (i)Pr, (n)Pr) and NaBPh(4), affording the novel cationic hydrido(alkoxo) derivatives [Cp*RuH(OR)((i)Pr(2)PSX)][BPh(4)]. These ruthenium(IV) compounds result from the formal oxidative addition of the alcohol to the 16-electron fragment {[Cp*Ru((i)Pr(2)PSX)](+)}, generated in situ upon chloride dissociation. The hydrido(alkoxo) complexes are reversibly deprotonated by a strong base such as KOBu(t), yielding the neutral alkoxides [Cp*Ru(OR)((i)Pr(2)PSX)], which are remarkably stable toward β elimination and do not generate the corresponding hydrides. The hydrido(alkoxo) complexes undergo a slow electron-transfer process, releasing H(2) and generating the dinuclear ruthenium(III) complex [{Cp*Ru(κ(2)-N,S-μ S-SC(5)H(4)N)}(2)][BPh(4)](2). In this species, the Ru-Ru separation is very short and consistent with what is expected for a Ru≡Ru triple bond.  相似文献   

3.
Trisubstitued N,N',N' '-tri(alkyl)guanidinate anions have been used in the synthesis of a family of Fe(II) and Fe(III) complexes. Complexes FeCl[((i)PrN)(2)C(HN(i)Pr)](2) (1), [Fe[micro-((i)PrN)(2)C(HN(i)Pr)][((i)PrN)(2)C(HN(i)Pr)]](2) (2), and [Fe[mgr;-(CyN)(2)C(HNCy)][(CyN)(2)C(HNCy)]](2) (3) were prepared from the reaction of the appropriate lithium tri(alkyl)guanidinate and FeCl(3) or FeBr(2). The complex [FeBr[micro-(CyN)(2)C(HNCy)]](2) (4), an apparent intermediate in the formation of 3, has also been isolated and characterized. Complexes 1 and 2 react with alkyllithium reagents to yield products that depend on the identity of the reagent as well as the reaction stoichiometry. Reaction of 2 with MeLi (1:2 ratio) produces Li(2)[Fe[micro-((i)PrN)(2)C=N(i)Pr][((i)PrN)(2)C(HN(i)Pr)]](2) (5). Reaction of 1 with an equimolar amount of LiCH(2)SiMe(3) results in reduction to Fe(II) and generation of 2 while reaction with 4 LiCH(2)SiMe(3) proceeds by a combination of reduction, substitution, and deprotonation of guandinate to yield Li(4)(THF)(2)[Fe[((i)PrN)(2)CN(i)Pr](CH(2)SiMe(3))(2)](2) (7). Both complexes 5 and 7 posssess dianionic guanidinate ligands. The reaction of 2 with 1 equiv of LiCH(2)SiMe(3) generated Fe(2)[micro-((i)PrNCN(i)Pr)(2)(N(i)Pr)][((i)PrN)(2)C(HN(i)Pr)](2) (6). Compound 6 has a dianionic biguanidinate ligand derived from the coupling of the two bridging guanidinate ligands of 2.  相似文献   

4.
New organometallic clusters with the MFe2(mu3-S)2 core (M = Mo or Fe) have been synthesized from inorganic [MoFe3S4] or [Fe4S4] clusters under high pressure CO. The reaction of (Cl4-cat)2Mo2Fe6S8(PR3)6[R = Et, (n)Pr] with high pressure CO produced the crystalline [MoFe2S2]4+ clusters, (Cl4-cat)Mo(O)Fe2S2(CO)(n)(PR3)6-n[n= 4, Et =I, (n)Pr =II; n = 5, Et =III] after flash column chromatography. The similar [MoFe2S2]4+ cluster, (Cl4-cat)2MoFe2S2(CO)2(depe)(2)(IV), also has been achieved by the reactions of (Cl4-cat)MoFe3S3(CO)6(PEt3)2 with depe by reductive decoupling of the cluster. For the [Fe3(mu3-S)2]4+ cluster, [Fe4S4(PcHex3)4](BPh4) was reacted with high pressure CO to produce a new Fe3S2(CO)7(PcHex)(2)(V) compound. These reactions generalized the preparation of organometallic compounds from inorganic clusters. All the compounds have been characterized by single crystal X-ray crystallography. A possible reaction pathway for the synthesis of the MFe2(mu3-S) clusters (M = Mo or Fe) has also been suggested.  相似文献   

5.
From the reaction of Ni(COD)(2) (COD = cyclooctadiene) in dry diethylether with 2 equiv of 2-phenyl-1,4-bis(isopropyl)-1,4-diazabutadiene (L(Ox))(0) under an Ar atmosphere, dark red, diamagnetic microcrystals of [Ni(II)(L*)(2)] (1) were obtained where (L*)(1-) represents the pi radical anion of neutral (L(Ox))(0) and (L(Red))(2-) is the closed shell, doubly reduced form of (L(Ox))(0). Oxidation of 1 with 1 equiv of ferrocenium hexafluorophosphate in CH(2)Cl(2) yields a paramagnetic (S = 1/2), dark violet precipitate of [Ni(I)(L(Ox))(2)](PF(6)) (2) which represents an oxidatively induced reduction of the central nickel ion. From the same reaction but with 2 equiv of [Fc](PF(6)) in CH(2)Cl(2), light green crystals of [Ni(II)(L(Ox))(2)(FPF(5))](PF(6)) (3) (S = 1) were obtained. If the same reaction was carried out in tetrahydrofuran, crystals of [Ni(II)(L(Ox))(2)(THF)(FPF(5))](PF(6)) x THF (4) (S = 1) were obtained. Compounds 1, 2, 3, and 4 were structurally characterized by X-ray crystallography: 1 and 2 contain a tetrahedral neutral complex and a tetrahedral monocation, respectively, whereas 3 contains the five-coordinate cation [Ni(II)(L(Ox))(2)(FPF(5))](+) with a weakly coordinated PF(6)(-) anion and in 4 the six-coordinate monocation [Ni(II)(L(Ox))(2)(THF)(FPF(5))](+) is present. The electro- and magnetochemistry of 1-4 has been investigated by cyclic voltammetry and SQUID measurements. UV-vis and EPR spectroscopic data for all compounds are reported. The experimental results have been confirmed by broken symmetry DFT calculations of [Ni(II)(L*)(2)](0), [Ni(I)(L(Ox))(2)](+), and [Ni(II)(L(Ox))(2)](2+) in comparison with calculations of the corresponding Zn complexes: [Zn(II)((t)L(Ox))(2)](2+), [Zn(II)((t)L(Ox))((t)L*)](+), [Zn(II)((t)L*)(2)](0), and [Zn(II)((t)L*)((t)L(Red))](-) where ((t)L(Ox))(0) represents the neutral ligand 1,4-di-tert-butyl-1,4-diaza-1,3-butadiene and ((t)L*)(1-) and ((t)L(Red))(2-) are the corresponding one- and two-electron reduced forms. It is clearly established that the electronic structures of both paramagnetic monocations [Ni(I)(L(Ox))(2)](+) (S = 1/2) and [Zn(II)((t)L(Ox))((t)(L*)](+) (S = 1/2) are different.  相似文献   

6.
The ligation of a N-heterocyclic carbene (NHC) to group 11 metal salts (Cu, Ag) was explored as an alternative to PR(3) ligands for the formation of copper- and silver-chalcogenolate cluster complexes. AgOAc and CuCl salts ligate with the NHC 1,3-di-isopropylbenzimidazole-2-ylidene ((i)Pr(2)-bimy) forming [Ag(OAc)((i)Pr(2)-bimy)] 1, [Ag(OAc)((i)Pr(2)-bimy)(2)] 2, [CuCl((i)Pr(2)-bimy)](2)3 and [CuCl((i)Pr(2)-bimy)(2)] 4 depending on the ratio of ligand to metal used. These have been characterized via spectroscopic and crystallographic methods. Complexes 1 and 3 were reacted with S(Ph)SiMe(3) and Se(Ph)SiMe(3) to form the polynuclear metal-chalcogenolates [Ag(4)(μ-EPh)(4)((i)Pr(2)-bimy)(4)] (5, E = S; 6, E = Se) and [Cu(3)(μ-EPh)(3)((i)Pr(2)-bimy)(3)] (7, E = S; 8, E = Se) in good yields. The structures of 5-8, as determined by single crystal X-ray crystallography, are described.  相似文献   

7.
The reaction of the ligand 2-(2-trifluoromethyl)anilino-4,6-di-tert-butylphenol, H(2)((1)L(IP)), and PdCl(2) (2:1) in the presence of air and excess NEt(3) in CH(2)Cl(2) produced blue-green crystals of diamagnetic [Pd(II)((1)L(ISQ))(2)] (1), where ((1)L(ISQ))(*)(-) represents the o-iminobenzosemiquinonate(1-) pi radical anion of the aromatic ((1)L(IP))(2-) dianion. The diamagnetic complex 1 was chemically oxidized with 1 equiv of Ag(BF(4)), affording red-brown crystals of paramagnetic (S = (1)/(2)) [Pd(II)((1)L(ISQ))((1)L(IBQ))](BF(4)) (2), and one-electron reduction with cobaltocene yielded paramagnetic (S = (1)/(2)) green crystals of [Cp(2)Co][Pd(II)((1)L(ISQ))((1)L(IP))] (3); ((1)L(IBQ))(0) represents the neutral, diamagnetic quinone form. Complex 1 was oxidized with 2 equiv of [NO]BF(4), affording green crystals of diamagnetic [Pd(II)((1)L(IBQ))(2)](3)(BF(4))(4){(BF(4))(2)H}(2).4CH(2)Cl(2) (5). Oxidation of [Ni(II)((1)L(ISQ))(2)] (S = 0) in CH(2)Cl(2) solution with 2 equiv of Ag(ClO(4)) generated crystals of [Ni(II)((1)L(IBQ))(2)(ClO(4))(2)].2CH(2)Cl(2) (6) with an S = 1 ground state. Complexes 1-5 constitute a five-membered complete electron-transfer series, [Pd((1)L)(2)](n) (n = 2-, 1-, 0, 1+, 2+), where only species 4, namely, diamagnetic [Pd(II)((1)L(IP))(2)](2-), has not been isolated; they are interrelated by four reversible one-electron-transfer waves in the cyclic voltammogram. Complexes 1, 2, 3, 5, and 6 have been characterized by X-ray crystallography at 100 K, which establishes that the redox processes are ligand centered. Species 2 and 3 exhibit ligand mixed valency: [Pd(II)((1)L(ISQ))((1)L(IBQ))](+) has localized ((1)L(IBQ))(0) and ((1)L(ISQ))(*)(-) ligands in the solid state, whereas in [Pd(II)((1)L(ISQ))((1)L(IP))](-) the excess electron is delocalized over both ligands in the solid-state structure of 3. Electronic and electron spin resonance spectra are reported, and the electronic structures of all members of this electron-transfer series are established.  相似文献   

8.
The first solid-state NMR investigation of dichalcogenoimidodiphosphinato complexes, M[N(R(2)PE)(2)](n), is presented. The single-source precursors for metal-selenide materials, M[N((i)Pr(2)PSe)(2)](2) (M = Zn, Cd, Hg), were studied by solid-state (31)P, (77)Se, (113)Cd, and (199)Hg NMR at 4.7, 7.0, and 11.7 T, representing the only (77)Se NMR measurements, and in the case of Cd[N((i)Pr(2)PSe)(2)](2)(113)Cd NMR measurements, to have been performed on these complexes. Residual dipolar coupling between (14)N and (31)P was observed in solid-state (31)P NMR spectra at 4.7 and 7.0 T yielding average values of R((31)P,(14)N)(eff) = 880 Hz, C(Q)((14)N) = 3.0 MHz, (1)J((31)P,(14)N)(iso) = 15 Hz, alpha = 90 degrees , beta = 26 degrees . The solid-state NMR spectra obtained were used to determine the respective phosphorus, selenium, cadmium, and mercury chemical shift tensors along with the indirect spin-spin coupling constants: (1)J((77)Se,(31)P)(iso), (1)J((111/113)Cd,(77)Se)(iso), (1)J((199)Hg,(77)Se)(iso), and (2)J((199)Hg,(31)P)(iso). Density functional theory magnetic shielding tensor calculations were performed yielding the orientations of the corresponding chemical shift tensors. For this series of complexes the phosphorus magnetic shielding tensors are essentially identical, the selenium magnetic shielding tensors are also very similar with respect to each other, and the magnetic shielding tensors of the central metals, cadmium and mercury, display near axial symmetry demonstrating an expected deviation from local S(4) symmetry.  相似文献   

9.
The electron transfer series of complexes [V((t)bpy)(3)](z) (z = 3+, 2+, 0, 1-) has been synthesized and spectroscopically characterized with the exception of the monocationic species. Magnetic susceptibility measurements (4-290 K) establish an S = 1 ground state for [V((t)bpy)(3)](3+), S = (3)/(2) for [V((t)bpy)(3)](2+), S = (1)/(2) for [V((t)bpy)(3)], and an S = 0 ground state for [V((t)bpy)(3)](1-). The electrochemistry of this series recorded in tetrahydrofuran solution exhibits four reversible one-electron transfer steps. Electronic absorption, X-band electron paramagnetic resonance (EPR), and V K-edge X-ray absorption (XAS) spectra were recorded. All complexes have been studied computationally with density functional theory (DFT) using the B3LYP functional. It is unequivocally shown that the electronic structure of complexes is best described as [V(III)((t)bpy(0))(3)](3+), [V(II)((t)bpy(0))(3)](2+), [V(II)((t)bpy(?))(2)((t)bpy(0))](0), and [V(II)((t)bpy(?))(3)](1-), where ((t)bpy(0)) represents the neutral form of the ligand and ((t)bpy(?))(1-) is the one-electron reduced mononanionic radical form. In the neutral and monoanionic members, containing two and three ((t)bpy(?))(1-) ligands, respectively, the ligand spins are strongly antiferromagnetically coupled to the spins of the central V(II) ion (d(3); S = (3)/(2)) affording the observed ground states given above.  相似文献   

10.
The reaction between the platinum(IV) complex trans-[PtCl(4)(EtCN)(2)] and the amino alcohols NH(2)CH(2)CH(2)OH, NH(2)CH(2)CH(Me)OH-(R)-(-), NH(2)CH(Ph)CH(2)OH-(R)-(-), NH(2)CH(Et)CH(2)OH-(R)-(-), NH(2)CH(Et)CH(2)OH-(S)-(+), and NH(2)CH(Pr(n)())CH(2)OH proceeds rapidly at room temperature in CH(2)Cl(2) to furnish the amidine complexes [PtCl(4)(HN=C(Et)NH(arcraise;)OH)(2)] (1-6) in good yield (70-80%). The related reaction between the platinum(II) complex trans-[PtCl(2)(EtCN)(2)] and monoethanolamine in a molar ratio of 1:2 in CH(2)Cl(2) results in the addition of 4 equiv of NH(2)CH(2)CH(2)OH per mole of complex to give [Pt(HN=C(Et)NHCH(2)CH(2)OH)(2)(NH(2)CH(2)CH(2)OH)(2)](2+) (7). Formulation of 1-6 is based upon satisfactory C, H, N elemental analyses, electrospray mass spectrometry, IR spectroscopy, and (1)H, (13)C((1)H), (15)N, and (195)Pt NMR spectroscopies, while the structures of trans-[PtCl(4)((Z)-NH=C(Et)NHCH(2)CH(2)OH)(2)] (1), trans-[PtCl(4)((Z)-NH=C(Et)NHCH(2)CH(Me)OH-(R)-(-))(2)] (2), and trans-[PtCl(4)((Z)-NH=C(Et)NHCH(Et)CH(2)OH-(R)-(-))(2)] (4) were determined by X-ray single-crystal diffraction. The Z-amidine configuration of the ligands is preserved in CDCl(3) solutions as confirmed by gradient-enhanced (15)N,(1)H-HMQC spectroscopy and NOE experiments. The amidines, formed upon Pt(IV)-mediated nitrile-amino alcohol coupling, were liberated from their platinum(IV) complexes 1, 3, and 4 by reaction with Ph(2)PCH(2)CH(2)PPh(2) (dppe) giving free NH=C(Et)NHCHRCH(2)OH (R = H 8, Et 9, Ph 10), with the substituents R of different types, and dppe oxides; the P-containing species were identified by (31)P((1)H) NMR spectroscopy. NOESY spectroscopy indicates that the liberated amidines retained the same configuration relative to the C=N double bond, i.e., syn-(H,Et)-NH=C(Et)NHCHRCH(2)OH. The liberated hydroxo-functionalized amidines 8-10 were converted into oxazolines (11-13) in the presence of a catalytic amount of ZnCl(2). A similar catalytic effect has also been reached using anhydrous MSO(4) (M = Cu, Co, Cd), CdCl(2), and AlCl(3).  相似文献   

11.
The structures of the P cluster and cofactor cluster of nitrogenase are well-defined crystallographically. They have been obtained only by biosynthesis; their chemical synthesis remains a challenge. Synthetic routes are sought to the P cluster in the P(N) state in which two cuboidal Fe(3)S(3) units are connected by a mu(6)-S atom and two Fe-(mu(2)-S(Cys))-Fe bridges. A reaction scheme affording a Mo(2)Fe(6)S(9) cluster in molecular form having the topology of the P(N) cluster has been devised. Reaction of the single cubane [(Tp)MoFe(3)S(4)Cl(3)](1)(-) with PEt(3) gives [(Tp)MoFe(3)S(4)(PEt(3))(3)](1+) (2), which upon reduction with BH(4)(-) affords the edge-bridged all-ferrous double cubane [(Tp)(2)Mo(2)Fe(6)S(8)(PEt(3))(4)] (4) (Tp = tris(pyrazolylhydroborate(1-)). Treatment of 4 with 3 equiv of HS(-) produces [(Tp)(2)Mo(2)Fe(6)S(9)(SH)(2)](3)(-) (7) as the Et(4)N(+) salt in 86% yield. The structure of 7 is built of two (Tp)MoFe(3)(mu(3)-S)(3) cuboidal fragments bridged by two mu(2)-S atoms and one mu(6)-S atom in an arrangement of idealized C(2) symmetry. The cluster undergoes three one-electron oxidation reactions and is oxidatively cleaved by p-tolylthiol to [(Tp)MoFe(3)S(4)(S-p-tol)(3)](2)(-) and by weak acids to [(Tp)MoFe(3)S(4)(SH)(3)](2-). The cluster core of 7 has the bridging pattern [Mo(2)Fe(6)(mu(2)-S)(2)(mu(3)-S)(6)(mu(6)-S)](1+) with the probable charge distribution [Mo(3+)(2)Fe(2+)(5)Fe(3+)S(9)](1+). Cluster 7 is a topological analogue of the P(N) cluster but differs in having two heteroatoms and two Fe-(mu(2)-S)-Fe instead of two Fe-(mu(2)-S(Cys))-Fe bridges. A best-fit superposition of the two cluster cores affords a weighted rms deviation in atom positions of 0.38 A. Cluster 7 is the first molecular topological analogue of the P(N) cluster. This structure had been prepared previously only as a fragment of complex high-nuclearity Mo-Fe-S clusters.  相似文献   

12.
As part of our work on models of the iron(III) site of Fe-containing nitrile hydratase, a designed ligand PyPSH(4) with two carboxamide and two thiolate donor groups has been synthesized. Reaction of (Et(4)N)[FeCl(4)] with the deprotonated form of the ligand in DMF affords the mononuclear iron(III) complex (Et(4)N)[Fe(III)(PyPS)] (1) in high yield. The iron(III) center is in a trigonal bipyramidal geometry with two deprotonated carboxamido nitrogens, one pyridine nitrogen, and two thiolato sulfurs as donors. Complex 1 is stable in water and binds a variety of Lewis bases at the sixth site at low temperature to afford green solutions with a band around 700 nm. The iron(III) centers in these six-coordinate species are low-spin and exhibit EPR spectra much like the enzyme. The pK(a) of the water molecule in [Fe(III)(PyPS)(H(2)O)](-) is 6.3 +/- 0.4. The iron(III) site in 1 with ligated carboxamido nitrogens and thiolato sulfurs does not show any affinity toward nitriles. It thus appears that at physiological pH, a metal-bound hydroxide promotes hydration of nitriles nested in close proximity of the iron center in the enzyme. Redox measurements demonstrate that the carboxamido nitrogens prefer Fe(III) to Fe(II) centers. This fact explains the absence of any redox behavior at the iron site in nitrile hydratase. Upon exposure to limited amount of dioxygen, 1 is converted to the bis-sulfinic species. The structure of the more stable O-bonded sulfinato complex (Et(4)N)[Fe(III)(PyP[SO(2)](2))] (2) has been determined. Six-coordinated low-spin cyanide adducts of the S-bonded and the O-bonded sulfinato complexes, namely, Na(2)[Fe(III)(PyP[SO(2)](2))(CN)] (4) and (Et(4)N)(2)[Fe(III)(PyP[SO(2)](2))(CN)] (5), afford green solutions in water and other solvents. The iron(II) complex (Et(4)N)(2)[Fe(II)(PyPS)] (3) has also been isolated and structurally characterized.  相似文献   

13.
14.
Reactions of Cu(I) salts with Na(S(2)CR) (R = N(n)Pr(2), NEt(2), aza-15-crown-5), and (Bu(4)N)(BH(4)) in an 8:6:1 ratio in CH(3)CN solution at room temperature yield the monocationic hydride-centered octanuclear Cu(I) clusters, [Cu(8)(H){S(2)CR}(6)](PF(6)) (R = N(n)Pr(2), 1(H); NEt(2), 2(H); aza-15-crown-5, 3(H)). Further reactions of [Cu(8)(H){S(2)CR}(6)](PF(6)) with 1 equiv of (Bu(4)N)(BH(4)) produced neutral heptanuclear copper clusters, [Cu(7)(H){S(2)CR}(6)] (R = N(n)Pr(2), 4(H); NEt(2), 5(H); aza-15-crown-5, 6(H)) and clusters 4-6 can also be generated from the reaction of Cu(BF(4))(2), Na(S(2)CR), and (Bu(4)N)(BH(4)) in a 7:6:8 molar ratio in CH(3)CN. Reformation of cationic Cu(I)(8) clusters by adding 1 equiv of Cu(I) salt to the neutral Cu(7) clusters in solution is observed. Intriguingly, the central hydride in [Cu(8)(H){S(2)CN(n)Pr(2)}(6)](PF(6)) can be oxidatively removed as H(2) by Ce(NO(3))(6)(2-) to yield [Cu(II)(S(2)CN(n)Pr(2))(2)] exploiting the redox-tolerant nature of dithiocarbamates. Regeneration of hydride-centered octanuclear copper clusters from the [Cu(II)(S(2)CN(n)Pr(2))(2)] can be achieved by reaction with Cu(I) ions and borohydride. The hydride release and regeneration of Cu(I)(8) was monitored by UV-visible titration experiments. To our knowledge, this is the first time that hydride encapsulated within a copper cluster can be released as H(2) via chemical means. All complexes have been fully characterized by (1)H NMR, FT-IR, UV-vis, and elemental analysis, and molecular structures of 1(H), 2(H), and 6(H) were clearly established by single-crystal X-ray diffraction. Both 1(H) and 2(H) exhibit a tetracapped tetrahedral Cu(8) skeleton, which is inscribed within a S(12) icosahedron constituted by six dialkyl dithiocarbamate ligands in a tetrametallic-tetraconnective (μ(2), μ(2)) bonding mode. The copper framework of 6(H) is a tricapped distorted tetrahedron in which the four-coordinate hydride is demonstrated to occupy the central site by single crystal neutron diffraction. Compounds 1-3 exhibit a yellow emission in both the solid state and in solution under UV irradiation at 77 K, and the structureless emission is assigned as a (3)metal to ligand charge transfer (MLCT) excited state. Density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations on model compounds match the experimental structures and provide rationalization of their bonding and optical properties.  相似文献   

15.
Reaction of Cu(ClO(4))(2) x 6H(2)O with a racemic mixture of the novel chiral ligand N-(1,2-bis(2-pyridyl)ethyl)pyridine-2-carboxamide (PEAH) affords only the homochiral dimeric copper(II) complexes [Cu(2)((R)()PEA)(2)](ClO(4))(2) and [Cu(2)((S)()PEA)(2)](ClO(4))(2) in a 1:1 ratio. The phenomenon of molecular self-recognition is also observed when a racemic mixture of the monomeric copper(II) complex [Cu((R(S))()PEA)(Cl)(H(2)O)] is converted into the homochiral dimeric species [Cu(2)((R(S))()PEA)(2)](ClO(4))(2) via reaction with Ag(+) ion. This is the first report of direct conversion of a racemic mixture of a chiral monomeric copper(II) complex to a mixture of the homochiral dimers.  相似文献   

16.
Two new pentadentate, pendent arm macrocyclic ligands of the type 1-alkyl-4,7-bis(4-tert-butyl-2-mercaptobenzyl)-1,4,7-triazacyclononane where alkyl represents an isopropyl, (L(Pr))(2-), or an ethyl group, (L(Et))(2-), have been synthesized. It is shown that they bind strongly to ferric ions generating six-coordinate species of the type [Fe(L(alk))X]. The ground state of these complexes is governed by the nature of the sixth ligand, X: [Fe(III)(L(Et))Cl] (2) possesses an S = 5/2 ground state as do [Fe(III)(L(Et))(OCH(3))] (3) and [Fe(III)(L(Pr))(OCH(3))] (4). In contrast, the cyano complexes [Fe(III)(L(Et))(CN)] (5) and [Fe(III)(L(Pr))(CN)] (6) are low spin ferric species (S = 1/2). The octahedral [FeNO](7) nitrosyl complex [Fe(L(Pr))(NO)] (7) displays spin equilibrium behavior S = 1/2<==>S = (3)/(2) in the solid state. Complexes [Zn(L(Pr))] (1), 4.CH(3)OH, 5.0.5toluene.CH(2)Cl(2), and 7.2.5CH(2)Cl(2) have been structurally characterized by low-temperature (100 K) X-ray crystallography. All iron complexes have been carefully studied by zero- and applied-field M?ssbauer spectroscopy. In addition, Sellmann's complexes [Fe(pyS(4))(NO)](0/1+) and [Fe(pyS(4))X] (X = PR(3), CO, SR(2)) have been studied by EPR and M?ssbauer spectroscopies and DFT calculations (pyS(4) = 2,6-bis(2-mercaptophenylthiomethyl)pyridine(2-)). It is concluded that the electronic structure of 7 with an S = 1/2 ground state is low spin ferrous (S(Fe) = 0) with a coordinated neutral NO radical (Fe(II)-NO) whereas the S = 3/2 state corresponds to a high spin ferric (S(Fe) = 5/2) antiferromagnetically coupled to an NO(-) anion (S = 1). The S = 1/2<==>S = 3/2 equilibrium is then that of valence tautomers rather than that of a simple high spin<==>low spin crossover.  相似文献   

17.
The new iron carbonyl cyanide trans-[Fe(CN)(2)(CO)(3)](2)(-), [2](2)(-), forms in high yield via photosubstitution of Fe(CO)(5) with 2 equiv of Et(4)NCN. Protonation of [2](2)(-) generated [HFe(CN)(2)(CO)(3)](-), [2H](-), the first H-Fe-CN-CO species. Further protonation gives dihydrogen. This simple system provides insights into hydrogen evolution by the hydrogenase enzymes, which also feature H-Fe-CN-CO centers.  相似文献   

18.
The use of 2,2':6',2'-terpyridine-4'-thiol (tpySH) was explored as a bridging ligand for the formation of stable assemblies containing both [4Fe-4S] clusters and single metal ions. Reaction of tpySH (2 equiv) with (NH4)2Fe(SO4)(2).6H2O generated the homoleptic complex [Fe(tpySH)2](2+), which was isolated as its PF6(-) salt. The compound could be fully deprotonated to yield neutral [Fe(tpyS)2], and the absorption spectrum is highly dependent on the protonation state. Reaction of [Fe(tpySH)2](PF6)2 with the new 3:1 site-differentiated cluster (n-Bu4N)2[Fe4S4(TriS)(SEt)] yielded the first metal-bridged [4Fe-4S] cluster dimer, (n-Bu4N)2[{Fe4S4(TriS)(mu-Stpy)}2Fe]. Electrochemical studies indicate that the [4Fe-4S] clusters in the dimer act as independent redox units, while UV-vis spectroscopy provides strong evidence for a thioquinonoid electron distribution in the bridging tpyS(-) ligand. TpySH thus acts as a directional bridging ligand between [4Fe-4S] clusters and single metal ions, thereby opening the way to the synthesis of larger, more complex assemblies.  相似文献   

19.
Tetrahedral FeCl[N(SiMe(3))(2)](2)(THF) (2), prepared from FeCl(3) and 2 equiv of Na[N(SiMe(3))(2)] in THF, is a useful ferric starting material for the synthesis of weak-field iron-imide (Fe-NR) clusters. Protonolysis of 2 with aniline yields azobenzene and [Fe(2)(mu-Cl)(3)(THF)(6)](2)[Fe(3)(mu-NPh)(4)Cl(4)] (3), a salt composed of two diferrous monocations and a trinuclear dianion with a formal 2 Fe(III)/1 Fe(IV) oxidation state. Treatment of 2 with LiCl, which gives the adduct [FeCl(2)(N(SiMe(3))(2))(2)](-) (isolated as the [Li(TMEDA)(2)](+) salt), suppresses arylamine oxidation/iron reduction chemistry during protonolysis. Thus, under appropriate conditions, the reaction of 1:1 2/LiCl with arylamine provides a practical route to the following Fe-NR clusters: [Li(2)(THF)(7)][Fe(3)(mu-NPh)(4)Cl(4)] (5a), which contains the same Fe-NR cluster found in 3; [Li(THF)(4)](2)[Fe(3)(mu-N-p-Tol)(4)Cl(4)] (5b); [Li(DME)(3)](2)[Fe(2)(mu-NPh)(2)Cl(4)] (6a); [Li(2)(THF)(7)][Fe(2)(mu-NMes)(2)Cl(4)] (6c). [Li(DME)(3)](2)[Fe(4)(mu(3)-NPh)(4)Cl(4)] (7), a trace product in the synthesis of 5a and 6a, forms readily as the sole Fe-NR complex upon reduction of these lower nuclearity clusters. Products were characterized by X-ray crystallographic analysis, by electronic absorption, (1)H NMR, and M?ssbauer spectroscopies, and by cyclic voltammetry. The structures of the Fe-NR complexes derive from tetrahedral iron centers, edge-fused by imide bridges into linear arrays (5a,b; 6a,c) or the condensed heterocubane geometry (7), and are homologous to fundamental iron-sulfur (Fe-S) cluster motifs. The analogy to Fe-S chemistry also encompasses parallels between Fe-mediated redox transformations of nitrogen and sulfur ligands and reductive core conversions of linear dinuclear and trinuclear clusters to heterocubane species and is reinforced by other recent examples of iron- and cobalt-imide cluster chemistry. The correspondence of nitrogen and sulfur chemistry at iron is intriguing in the context of speculative Fe-mediated mechanisms for biological nitrogen fixation.  相似文献   

20.
The dicyanodicarbonyliron(II) thiolate complexes trans,cis-[(CN)(2)(CO)(2)Fe(S,S-C-R)](-) (R = OEt (2), N(Et)(2) (3)) were prepared by the reaction of [Na][S-C(S)-R] and [Fe(CN)(2)(CO)(3)(Br)](-) (1). Complex 1 was obtained from oxidative addition of cyanogen bromide to [Fe(CN)(CO)(4)](-). In a similar fashion, reaction of complex 1 with [Na][S,O-C(5)H(4)N], and [Na][S,N-C(5)H(4)] produced the six-coordinate trans,cis-[(CN)(2)(CO)(2)Fe(S,O-C(5)H(4)N)](-) (6) and trans,cis-[(CN)(2)(CO)(2)Fe(S,N-C(5)H(4))](-) (7) individually. Photolysis of tetrahydrofuran (THF) solution of complexes 2, 3, and 7 under CO led to formation of the coordinatively unsaturated iron(II) dicyanocarbonyl thiolate compounds [(CN)(2)(CO)Fe(S,S-C-R)](-) (R = OEt (4), N(Et)(2) (5)) and [(CN)(2)(CO)Fe(S,N-C(5)H(4))](-) (8), respectively. The IR v(CN) stretching frequencies and patterns of complexes 4, 5, and 8 have unambiguously identified two CN(-) ligands occupying cis positions. In addition, density functional theory calculations suggest that the architecture of five-coordinate complexes 4, 5, and 8 with a vacant site trans to the CO ligand and two CN(-) ligands occupying cis positions serves as a conformational preference. Complexes 2, 3, and 7 were reobtained when the THF solution of complexes 4, 5, and 8 were exposed to CO atmosphere at 25 degrees C individually. Obviously, CO ligand can be reversibly bound to the Fe(II) site in these model compounds. Isotopic shift experiments demonstrated the lability of carbonyl ligands of complexes 2, 3, 4, 5, 7, and 8. Complexes [(CN)(2)(CO)Fe(S,S-C-R)](-) and NiA/NiC states [NiFe] hydrogenases from D. gigas exhibit a similar one-band pattern in the v(CO) region and two-band pattern in the v(CN) region individually, but in different positions, which may be accounted for by the distinct electronic effects between [S,S-C-R](-) and cysteine ligands. Also, the facile formations of five-coordinate complexes 4, 5, and 8 imply that the strong sigma-donor, weak pi-acceptor CN(-) ligands play a key role in creating/stabilizing five-coordinate iron(II) [(CN)(2)(CO)Fe(S,S-C-R)](-) complexes with a vacant coordination site trans to the CO ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号