首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
One- and two-photon excitation spectra of sodium atoms on the surface of helium droplets are reported. The spectra are recorded by monitoring the photoionization yield of desorbed atoms as function of excitation frequency. The excitation spectra involving states with principal quantum number up to n = 6 can be reproduced by a pseudodiatomic model where the helium droplet is treated as a single atom. For the lowest excited states of sodium, the effective interaction potentials for this system can be approximated by the sum of NaHe pair potentials. For the higher excited states, the interaction of the sodium valence electron with the helium induces significant configuration mixing, leading to a failure of this approach. For these states, effective interaction potentials based on a perturbative treatment of the interactions between the valence electron, the alkali positive core, and the helium, as described in detail in the accompanying publication, yield excellent agreement with experiment.  相似文献   

2.
The preparation of an artificial superatom consisting of a positive charge inside a superfluid helium nanodroplet and an electron in an orbital surrounding the droplet is of fundamental interest and represents an experimental challenge. In this work, nanodroplets of several thousand helium atoms are doped with single caesium (Cs) atoms. While on the droplet, the Cs valence electron is excited in two steps through an intermediate state into nS, nP, and nD states. The excitation is monitored by laser induced fluorescence or, for high principal quantum numbers, by resonant three-photon-ionization. On-droplet Rydberg excitations are resolved up to about n = 20. The energies are compared with those of free Cs atom Rydberg states and quantum defects as well as the on-droplet ionization threshold are derived.  相似文献   

3.
Optical-optical-optical triple resonance spectroscopy isolates transitions to vibrationless Rydberg states of BH with principal quantum numbers from n=7 to 50. Corresponding resonances appear in the excitation spectrum of excited boron atoms produced by the dissociative relaxation of these states. The decay to neutral products occurs on a nanosecond time scale. Yet, corresponding resonances show Fano coupling widths that approach 1 cm-1. Above threshold, spontaneous ionization dominates, but line shapes match for resonances with the same electron orbital quantum numbers built on v+=0 and v+=1 cores. This striking feature-for-feature similarity in predissociation and autoionization line shapes affirms that inelastic electron-cation scattering pathways leading to electron ejection and dissociative recombination proceed through a common continuum.  相似文献   

4.
The ionization of a beam of H2 Rydberg molecules in collision with a metal surface (evaporated Au or Al) is studied. The Rydberg states are excited in an ultraviolet-vacuum ultraviolet double-resonant process and are state selected with a core rotational quantum number N+=0 or 2 and principal quantum numbers n=17-22 (N+=2) or n=41-45 (N+=0). It is found that the N+=0 states behave in a very similar manner to previous studies with atomic xenon Rydberg states, the distance of ionization from the surface scaling with n2. The N+=2 states, however, undergo a process of surface-induced rotational autoionization in which the core rotational energy transfers to the Rydberg electron. In this case the ionization distance scales approximately with nu0(2), the effective principal quantum number with respect to the adiabatic threshold. This process illustrates the close similarity between field ionization in the gas phase and the surface ionization process which is induced by the field due to image charges in the metal surface. The surface ionization rate is enhanced at certain specific values of the field, which is applied in the time interval between excitation and surface interaction. It is proposed here that these fields correspond to level crossings between the N+=0 and N+=2 Stark manifolds. The population of individual states of the N+=2, n=18 Stark manifold in the presence of a field shows that the surface-induced rotational autoionization is more facile for the blueshifted states, whose wave function is oriented away from the surface, than for the redshifted states. The observed processes appear to show little dependence on the chemical nature of the metallic surface, but a significant change occurs when the surface roughness becomes comparable to the Rydberg orbit dimensions.  相似文献   

5.
We report a comprehensive investigation of the electronically excited states of helium clusters and droplets of sizes ranging from a few to several 10(7) atoms using time-resolved fluorescence excitation spectroscopy and quantum chemical ab initio calculations. We employ various approaches for our analysis considering the lifetime-dependence of the fluorescence intensity, spectral shifts, intensity scaling with cluster size, isotopic dependence, and density-dependence of the calculated electron wave function radii. A unique feature of helium clusters and droplets is their radially varying particle density. Our results show that short-lived fluorescence is sensitive to regions of increased density and probes excitations located in the bulk volume, whereas long-lived fluorescence is sensitive to regions of reduced density such as for small clusters or for the surface of large droplets. Spectra of (3)He droplets serve as a reference for low density, but are free from contributions of small clusters. This allows us to distinguish regions of reduced density as these can be due to both surface states or small clusters. Our analysis reveals a picture where spectral features are related to regions of different density due to isotopic composition, cluster size, and surface or bulk volume location of the excitations. The 2s and 2p related excitations appear as blue-shifted wings for small clusters or for excited atoms within the surface layer, whereas in the bulk-volume of large droplets, they appear as distinct bands with large intensities, dominating the entire spectrum. Excitations at energies higher than 23 eV are unambiguously assigned to regions of low and medium density location within the deeper parts of the surface layer but show no relation to the bulk volume. Our findings support the idea that in liquid helium high-lying states and, in particular, Rydberg states are quenched in favor of the 2s and 2p excitations.  相似文献   

6.
Highly excited states of rubidium (Rb) atoms attached to helium (He) nanodroplets are studied by two-photon ionization spectroscopy in combination with electron and ion imaging. We find high yields of RbHe and RbHe(2) exciplexes when exciting to the 4D and 6P bands but not at the 6S band, in accord with a direct formation of exciplexes in binding RbHe pair potentials. Photoion spectra and angular distributions are in good agreement with a pseudodiatomic model for the RbHe(N) complex. Repulsive interactions in the excited states entail fast dissociation followed by ionization of free Rb atoms as well as of RbHe and RbHe(2) exciplexes.  相似文献   

7.
Diffusion Monte Carlo calculations are carried out for clusters of OH- (1Sigma+) with N 4He atoms, N varying up to 15, while classical configurations from a genetic algorithm optimization are obtained up to N=20. The overall interaction potential is assembled from ab initio data for the partners using the sum-of-potentials scheme. In contrast with the cationic dopants' behavior, the results indicate a very marked spatial delocalization and quantum features of the solvent adatoms surrounding the anionic impurity, thus making classical calculations of solvent's spatial locations of only limited use. In spite of the generally known repulsive interaction of negative charges in He droplets, the calculations show that this polar molecular anion is solvated by a liquidlike solvent layer, reminiscent of what happens in pure helium droplets.  相似文献   

8.
We present a theoretical analysis of the electronic absorption spectra of tetracene in (4)He droplets based on many-body quantum simulations. Using the path integral ground state approach, we calculate one- and two-body reduced density matrices of the most strongly localized He atoms near the molecule surface and use these to investigate the helium ground-state quantum coherence and correlations when tetracene is in its electronic ground and excited states. We identify a trio of quasi-one-dimensional, strongly localized atoms adsorbed along the long axis of the molecule that show some quantum coherence among themselves but far less with the remaining solvating helium. We evaluate the single-particle natural orbitals of the localized He atoms by diagonalization of the one-body density matrix and use these to construct single- and many-particle solvating helium basis states with which the zero-phonon spectral features of the tetracene-(4)He(N) absorption spectrum are then calculated. The absorption spectrum resulting from the three-body density matrix for the strongly bound trio of helium atoms is in very good agreement with the experimental data, accounting quantitatively for the anomalous splitting of the zero-phonon line [Hartmann, M.; Lindinger, A.; Toennies, J. P.; Vilesov, A. F. Chem. Phys. 1998, 239, 139; Krasnokutski, S.; Rouillé, G.; Huisken, F. Chem. Phys. Lett. 2005, 406, 386]. Our results indicate that the combination of strong localization and the quasi-one-dimensional nature of trios of helium atoms adsorbed along the long axis of tetracene leads to a quantum coherent, yet highly correlated ground state for the helium density closest to the molecule. The spectroscopic analysis shows that this feature accounts quantitatively for the anomalous splittings and hitherto unexplained fine structure observed in the absorption spectra of tetracene and suggests that it may be responsible for the corresponding zero-phonon splittings in other quasi-one-dimensional planar aromatic molecules.  相似文献   

9.
We investigated small helium clusters formation in nonequilibrium conditions using the non-Hermitian formalism. Helium is a simple enough system for analytical study while complicated enough to have a rich variety of quantum properties. In this article, we used a new formalism based on non-Hermitian quantum mechanics for describing the electronic excited states in clusters. This formalism enabled to estimate the decay time of excited states within a single scheme. Its implementation to helium shows the existence of new long-lived excited states in small helium clusters at the distance of 5.6 Bohr radii between atoms. Moreover, several helium excimers and exciplexes at the distances between helium atoms of 35.5, 22.8, 14.0, and 8.5 Bohr radii with the scaling factor of about 1.6 were found. It is related to the restructuring of the electronic structure caused by powerful external excitations. These results give a new insight on clustering processes providing more profound and complete understanding.  相似文献   

10.
We have studied the dissociative ionization behavior of Na2 molecules using two-color, three photon optical-optical double resonance enhanced excitation via the A(1)Sigma(u)(+) and the 2(1)Pi(g) states. Excess energy ranges from about 150 to about 1500 cm(-1) above threshold for dissociative ionization into ground-state Na and Na(+). Slow atomic Na(+) fragments and Na2(+) molecular ions are detected using a linear time-of-flight spectrometer operated in low field extraction, core sampling mode. To explain the observed energy dependence of the Na(+)/Na2(+) branching ratio, we introduce a semiclassical model for the underlying decay dynamics. Franck-Condon overlap densities for bound-free transitions starting in 2(1)Pi(g) vibrational levels indicate that atomic Na(+) fragments are primarily produced via Rydberg states, with principal quantum number n between 5 and 12, converging to the repulsive 1(2)Sigma(u)(+) first excited-state potential of Na2(+). Dynamics along these Rydberg curves involves competition between electronic (autoionizing) and nuclear (dissociative) degrees of freedom. Within the model, the autoionization lifetime tau auto is the only one free parameter available to fit calculated Na(+)/Na2(+) branching ratios as a function of excess energy to the observed values. The lifetime is assumed to be the same multiple c of the Bohr period of each Rydberg potential. A chi(2)-minimization procedure yields, for the range of principal quantum numbers involved, a most likely value of c = 1.5 +/- 0.3, implying that on average the Rydberg electron completes only 1 to 2 orbits before interaction with the excited core electron leads to autoionization.  相似文献   

11.
We report the non-desorption of cesium (Cs) atoms on the surface of helium nanodroplets (He(N)) in their 6(2)P(1/2) ((2)Π(1/2)) state upon photo-excitation as well as the immersion of Cs(+) into the He(N) upon photo-ionization via the 6(2)P(1/2) ((2)Π(1/2)) state. Cesium atoms on the surface of helium nanodroplets are excited with a laser to the 6(2)P states. We compare laser-induced fluorescence (LIF) spectra with a desorption-sensitive method (Langmuir-Taylor detection) for different excitation energies. Dispersed fluorescence spectra show a broadening of the emission spectrum only when Cs-He(N) is excited with photon energies close to the atomic D(1)-line, which implies an attractive character of the excited state system (Cs?-He(N)) potential energy curve. The experimental data are compared with a calculation of the potential energy curves of the Cs atom as a function of its distance R from the center of the He(N) in a pseudo-diatomic model. Calculated Franck-Condon factors for emission from the 6(2)P(1/2) ((2)Π(1/2)) to the 6(2)S(1/2) ((2)Σ(1/2)) state help to explain the experimental data. The stability of the Cs?-He(N) system allows to form Cs(+) snowballs in the He(N), where we use the non-desorbing 6(2)P(1/2) ((2)Π(1/2)) state as a springboard for ionization in a two-step ionization scheme. Subsequent immersion of positively charged Cs ions is observed in time-of-flight mass spectra, where masses up to several thousand amu were monitored. Only ionization via the 6(2)P(1/2) ((2)Π(1/2)) state gives rise to a very high yield of immersed Cs(+) in contrast to an ionization scheme via the 6(2)P(3/2) ((2)Π(3/2)) state. When resonant two-photon ionization is applied to cesium dimers on He droplets, Cs(2) (+)-He(N) aggregates are observed in time-of-flight mass spectra.  相似文献   

12.
Ultrafast relaxation of electronically excited pure He droplets is investigated by femtosecond time-resolved photoelectron imaging. Droplets are excited by extreme ultraviolet (EUV) pulses with photon energies below 24 eV. Excited states and relaxation products are probed by ionization with an infrared (IR) pulse with 1.6 eV photon energy. An initially excited droplet state decays on a time scale of 220 fs, leading predominantly to the emission of unaligned 1s3d Rydberg atoms. In a second relaxation channel, electronically aligned 1s4p Rydberg atoms are emitted from the droplet within less than 120 fs. The experimental results are described within a model that approximates electronically excited droplet states by localized, atomic Rydberg states perturbed by the local droplet environment in which the atom is embedded. The model suggests that, below 24 eV, EUV excitation preferentially leads to states that are localized in the surface region of the droplet. Electronically aligned 1s4p Rydberg atoms are expected to originate from excitations in the outermost surface regions, while nonaligned 1s3d Rydberg atoms emerge from a deeper surface region with higher local densities. The model is used to simulate the He droplet EUV absorption spectrum in good agreement with previously reported fluorescence excitation measurements.  相似文献   

13.
Following our work on the study of helium droplets and film doped with one electronically excited rubidium atom Rb(?) ((2)P) [M. Leino, A. Viel, and R. E. Zillich, J. Chem. Phys. 129, 184308 (2008)], we focus in this paper on the second excited state. We present theoretical studies of such droplets and films using quantum Monte Carlo approaches. Diffusion and path integral Monte Carlo algorithms combined with a diatomics-in-molecule scheme to model the nonpair additive potential energy surface are used to investigate the energetics and the structure of Rb(?)He(n) clusters. Helium films as a model for the limit of large clusters are also considered. As in our work on the first electronic excited state, our present calculations find stable Rb(?)He(n) clusters. The structures obtained are however different with a He-Rb(?)-He exciplex core to which more helium atoms are weakly attached, preferentially on one end of the core exciplex. The electronic absorption spectrum is also presented for increasing cluster sizes as well as for the film.  相似文献   

14.
The solvation of Ba(+) ions created by the photoionization of barium atoms located on the surface of helium nanodroplets has been investigated. The excitation spectra corresponding to the 6p (2)P(1∕2) ← 6s (2)S(1∕2) and 6p (2)P(3∕2) ← 6s (2)S(1∕2) transitions of Ba(+) are found to be identical to those recorded in bulk He II [H. J. Reyher, H. Bauer, C. Huber, R. Mayer, A. Schafer, and A. Winnacker, Phys. Lett. A 115, 238 (1986)], indicating that the ions formed at the surface of the helium droplets become fully solvated by the helium. Time-of-flight mass spectra suggest that following the excitation of the solvated Ba(+) ions, these are being ejected from the helium droplets either as bare Ba(+) ions or as small Ba(+)He(n) (n < 20) complexes.  相似文献   

15.
We observe that resonant ionization plays a dominant role in the multiphoton ionization (MPI) of xenon at wavelengths around 600 nm, irrespective of the detuning of multiples of the photon energy from excited states of the undisturbed atom. Angular distributions of energy resolved photoelectrons allow to identify excited states which are strongly ac-Stark shifted in the intense laser field and which serve as intermediate resonances in MPI processes. Angular distributions measured at different wavelengths show that the ac-Stark shift of excited states can be larger than the photon energyhω. Our results support the model proposed by Freeman et al.  相似文献   

16.
We have investigated the ionization threshold behavior of small helium cluster ions (cluster size n=2-10) formed via electron-impact ionization of neutral helium droplets and derive appearance energies for mass-selected cluster ions using a nonlinear least-square-fitting procedure. Moreover, we report magic numbers in the mass spectrum observed at the electron energy of 70 eV. The apparatus used for the present measurements is a hemispherical electron monochromator combined with a quadrupole mass spectrometer. Our experiment demonstrates that helium clusters are not only exclusively formed via direct ionization above the atomic ionization potential but also indirectly via autoionizing Rydberg states. The present results are compared with previous electron-impact and photoionization results.  相似文献   

17.
The photochemistry of low lying excited states of six different fluorinated bromobenzenes has been investigated by means of femtosecond laser spectroscopy and high level ab initio CASSCF/CASPT2 quantum chemical calculations. The objective of the work was to investigate how and to what extent light substituents, position on the benzene ring and number, would influence the dissociation mechanism of bromobenzene. In general, the actual position of a fluorine atom affects the dissociation rate to a less extent than the number of fluorine atoms. A clear connection between a lowering of a repulsive pisigma relative to a bound pipi state and the number of fluorine substituents exists, and the previously suggested model of coupling between dissociation rate and relative location of bound and repulsive state still holds for these molecules. A more elaborate examination of the electronic structure of the excited states in bromobenzenes than previously reported is presented.  相似文献   

18.
Electron impact ionization of helium nano-droplets containing several 104 He atoms and doped with CCl4 or SF6 molecules is studied with high-mass resolution. The mass spectra show significant clustering of CCl4 molecules, less so for SF6 under our experimental conditions. Positive ion efficiency curves as a function of electron energy indicate complete immersion of the molecules inside the helium droplets in both cases. For CCl4 we observe the molecular parent cation CCl4+ that preferentially is formed via Penning ionization upon collisions with He*. In contrast, no parent cation SF6+ is seen for He droplets doped with SF6. The fragmentation patterns for both molecules embedded in He are compared with gas phase studies. Ionization via electron transfer to He+ forms highly excited ions that cannot be stabilized by the surrounding He droplet. Besides the atomic fragments F+ and Cl+ several molecular fragment cations are observed with He atoms attached.  相似文献   

19.
The photodissociation dynamics of allyl bromide was investigated at 234, 265, and 267 nm. A two-dimensional photofragment ion velocity imaging technique coupled with a [2+1] resonance-enhanced multiphoton ionization scheme was utilized to obtain the angular and translational energy distributions of the nascent Br* (2P1/2) and Br (2P3/2) atoms. The Br fragments show a bimodal translational energy distribution, while the Br* fragments reveal one translational energy distribution. The vertical excited energies and the mixed electronic character of excited states were calculated at ab initio configuration interaction method. It is presumed that the high kinetic energy bromine atoms are attributed to the predissociation from 1(pipi*) or 1(pisigma*) state to the repulsive 1(nsigma*) state, and to the direct dissociation from 3(nsigma*) and 3(pisigma*) states, while the low kinetic energy bromine atoms stem from internal conversion from the lowest 3(pipi*) state to 3(pisigma*) state.  相似文献   

20.
The first ionization potentials of benzene and benzene-d6 have been precisely determined by the extrapolation of three-photon resonant Rydberg states in the four-photon ionization spectrum of the jet-cooled molecule. The convergence of resolved transitions in two Rydberg series for principal quantum numbers as high as 14 (-h6) and 15 (-d6) establish adiabatic thtesholds of 74573.0 ± 2.0 cm?1, and 74592.5 = ± 1.2 cm?1, respectively. These results are crucial for the understanding of the many excited states of benzene in terms of quantum defect theory. Precise quantum defects have been obtained for several Rydberg series and their variation with principal quantum number is reported. The results strongly suggest that the R? series of Wilkinson is derived from aπ(e1g)→ nf±1 Rydberg excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号