首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two series of quadrupolar diphenylamino-endcapped oligofluorenes, PhN-OF(n)-NPh (n=2-5) and PhN-OF(n)-TAZ-OF(n)-NPh (n=1-4), which have an electron-withdrawing 1,2,4-triazole (TAZ) moiety as central core, with D-π-A-π-D structural motif (D=donor, A=acceptor), have been synthesized by palladium-catalyzed Suzuki cross-coupling of 9,9-dibutyl-7-(diphenylamino)-2-fluorenylboronic acid and the corresponding (1,2,4-triazole-based) aryl halide as key step. On pumping with infrared femtosecond lasers, these oligomers showed very strong multiphoton-excited blue photoluminescence. These D-π-D and D-π-A-π-D quadrupolar oligofluorenes exhibit superior three-photon absorption properties compared to the respective D-π-A counterparts with a highest three-photon absorption cross-section (σ(3)) of up to 2.72×10(-77) cm(6) s(2) . Despite the comparable linear and multiphoton absorption properties of the two types of quadrupolar oligomers PhN-OF(n)-NPh and PhN-OF(n)-TAZ-OF(n)-NPh, only the former exhibit remarkably intense and highly efficient multiphoton-excited frequency-upconverted deep blue lasing, which gives rise to record high lasing efficiency of 0.097% and very narrow of full width at half-maximum of the lasing spectra. Our findings suggest that quadrupolar-type molecules/oligomers are superior for multiphoton excited frequency upconverted lasing to their dipolar counterparts and also provide important guidelines to design highly efficient three-photon absorption molecules for photoluminescence and lasing applications.  相似文献   

2.
A novel series of diphenylamino‐ and 1,2,4‐triazole‐end‐capped, fluorene‐based, π‐conjugated oligomers that includes extended oligofluorenes and oligothienylfluorenes has been synthesized by means of the palladium‐catalyzed Suzuki cross‐coupling of 9,9‐dibutyl‐7‐(diphenylamino)‐2‐fluorenylboronic acid and the corresponding 1,2,4,‐triazole‐based aryl halide as a key step. It was demonstrated that efficient two‐ and three‐photon excited photoluminescence and lasing in the blue region are obtained by pumping near‐infrared femtosecond lasers on these materials. Although the absorption and emission maxima of the highly fluorescent and extended oligofluorenes reach a saturation limit, there exists an effective conjugation length for an optimum three‐photon absorption cross section in the homologous oligofluorene series. On the other hand, the multiphoton excited emission spectrum and lasing wavelength can easily be modified or tuned by an incorporation of thienyl unit(s) into the fluorene‐based π‐conjugated core with which exceptionally large three‐photon absorption cross sections up to 3.59×10?77 cm6 s2 in the femtosecond regime have been obtained, thereby highlighting the potential of this series of photonic materials. The optimized full width at half‐maximum of the cavityless three‐photon upconverted blue lasing spectra are sharply narrowed to approximately 6 nm with an efficiency of up to 0.013 %.  相似文献   

3.
A series of highly extended π‐conjugated ladder‐type oligo(p‐phenylene)s containing up to 10 phenyl rings with (L)‐Ph(n)‐NPh (n=7–10) or without diphenylamino endcaps (L)‐Ph(n) (n=7 and 8) were synthesized and investigated for their multiphoton absorption properties for frequency upconverted blue ASE/lasing. Extremely large two‐photon absorption (2PA) cross‐sections and highly efficient 2PA ASE/lasing with ultralow threshold were achieved. (L)‐Ph(10)‐NPh exhibits the highest intrinsic 2PA cross‐section of 3643 GM for a blue emissive organic fluorophore reported so far. The record‐high 2PA pumped ASE/lasing efficiency of 2.06 % was obtained by un‐endcapped oligomer, (L)‐Ph(8) rather than that with larger σ2, suggesting that a molecule with larger σ2 is not guaranteed to exhibit higher η2. All of these oligomers exhibit exceptionally ultralow 2PA pumped ASE/lasing thresholds, among which the lowest 2PA pumped threshold of circa 0.26 μJ was achieved by (L)‐Ph(10)‐NPh.  相似文献   

4.
We have developed a correction method (CV) to calculate the single- and multiphoton absorption (MPA) spectra of organic pi-conjugated systems within the equation of motion coupled-cluster method with single and double excitations (EOM-CCSD). The effects of donor/acceptor strengths on the multiphoton absorption in a series of symmetrically substituted stilbene derivatives have been reinvestigated at both the ab initio and the semiempirical intermediate neglect of differential overlap (INDO) Hamiltonian levels. Both ab initio and INDO calculations show that the electron-donating or electron-withdrawing substituents lead to enhancements of two- and three-photon absorption cross sections, more pronounced for two-photon absorption than for three-photon absorption. The ab initio calculations usually produce larger excitation energies than the semiempirical, which lead to lower MPA cross sections.  相似文献   

5.
A correction vector method within the multireference determinant single and double configuration interaction approximation coupled with the semiempirical intermediate neglect of differential overlap Hamiltonian has been developed for the computation of single and multiphoton absorption spectra of conjugated molecules. We study the effect of pi conjugation on these properties in the extended rylenebis(dicarboximide)s. The one-, two-, and three-photon absorption cross sections of the lowest-lying excited states show a power law dependence on the conjugation length, with exponents of about 1.3, 2.6, and 5.6, respectively. The maximum value of the three-photon absorption cross section in these molecules is calculated to be 1.06x10(-78) cm6 s2photon2 for photon energy at 0.57 eV.  相似文献   

6.
In this paper, the equilibrium geometries, one-, two-, and three-photon absorption properties, and the transition nature of a series of Y-shaped molecules which possess an imidazole-thiazole core have been theoretically studied by using the parametrization model 3 and Zerner's intermediate neglect of differential overlap methods. Our calculated results have confirmed the experimental findings that the investigated molecules are all promising multiphoton absorption materials and both the two-photon absorption and the three-photon absorption cross sections are seriatim increscent along with the increase of the electron-donor strength. The nonlinear optical phenomenon originates from the intramolecular charge transfer within the pi-conjugated system. The calculated results indicate that the heterocyclic core increases the two- and three-photon absorption cross sections due to its pi-excessive nature. So it can provide more free electrons to enlarge the charge transfer within the molecule system. In addition, the design of Y shape and the sulfonyl-based electron-accepting group play a part in the enhancement of multiphoton absorption. It is notable that molecules with heterocyclic core will provide favorable condition for multiphoton absorption applications.  相似文献   

7.
One-, two-, and three-photon absorption induced fluorescence intensities of a novel nonlinear optical chromophore have been measured by using a tunable femtosecond pulsed laser as the excitation. Four resonance peaks are observed as the excitation wavelength is tuned from 600 to 2000 nm. These peaks correspond to the one-, two- and three-photon fluorescence resonance. Except for intensity difference, the lifetime and the fluorescence spectrum are found to be the same for the one-, two-, or three-photon resonance, hence suggesting that the same excited energy level is involved in emitting the fluorescence intensity. A three-level model is developed to account for the incident excitation laser intensity dependence of the one-photon and multiphoton fluorescence intensity. The model allows the multiphoton absorption cross sections to be extracted; it can also account for the deviation observed in the linear, square, and cubic intensity dependence of the one-, two-, and three-photon fluorescence intensity, respectively. To determine the absorption cross sections, the present method does not require the fluorescence quantum efficiency data, needed in the low intensity technique.  相似文献   

8.
We have calculated the multiphoton absorption cross-sections for three expanded porphyrin derivatives using the sum-over-states-involved tensor approach in combination with the strongly correlated multireference determinant single- and double-configuration interaction method. The calculated results showed that the two- and three-photon energies corresponding to the first peak of the multiphoton absorption spectra showed a decrease (red-shifted) with the number of inserted thiophene groups, whereas the cross sections showed a remarkable increase, particularly for three-photon absorption cross-section. However, the larger twist of the molecular plane for the expanded molecule resulted in an obvious drop in the increasing trend for three-photon absorption cross-section.  相似文献   

9.
发展关联电子体系的多参考组态相互作用方法, 应用态求和的张量方法, 计算研究了三种扩展卟啉分子的多光子吸收特性. 计算结果表明, 通过中间插入噻吩杂环基团, 扩展卟啉分子的双光子和三光子吸收峰发生较大红移, 对应的吸收截面得到显著的提高, 并且三光子吸收截面的增加更为明显; 但是由于卟啉环扩大导致分子平面发生扭曲, 三光子吸收截面的增大趋势明显减弱.  相似文献   

10.
This paper shows the results of combined experimental and theoretical work that have unravelled the mechanism of ultrafast ejection of a methyl group from a cluster, the methyl iodide dimer (CH(3)I)(2). Ab initio calculations have produced optimized geometries for the dimer and energy values and oscillator strengths for the excited states of the A band of (CH(3)I)(2). These calculations have allowed us to describe the blue shift that had been observed in the past in this band. This blue shift has been experimentally determined with higher precision than in all previously reported experiments, since it has been measured through its effect upon the kinetic energy release of the fragments using femtosecond velocity map imaging. Observations of the reaction branching ratio and of the angular nature of the fragment distribution indicate that two main changes occur in A-band absorption in the dimer with respect to the monomer: a substantial change in the relative absorption to different states of the band, and, more importantly, a more efficient non-adiabatic crossing between two of those states. Additionally, time resolved experiments have been performed on the system, obtaining snapshots of the dissociation process. The apparent retardation of more than 100 fs in the dissociation process of the dimer relative to the monomer has been assigned to a delay in the opening of the optical detection window associated with the resonant multiphoton ionization detection of the methyl fragment.  相似文献   

11.
Upconversion (UC) refers to nonlinear optical processes in which the sequential absorption of two or more photons leads to the emission of light at shorter wavelength than the excitation wavelength (anti-Stokes type emission). In contrast to other emission processes based on multiphoton absorption, upconversion can be efficiently excited even at low excitation densities. The most efficient UC mechanisms are present in solid-state materials doped with rare-earth ions. The development of nanocrystal research has evoked increasing interest in the development of synthesis routes which allow the synthesis of highly efficient, small UC particles with narrow size distribution able to form transparent solutions in a wide range of solvents. Meanwhile, high-quality UC nanocrystals can be routinely synthesized and their solubility, particle size, crystallographic phase, optical properties and shape can be controlled. In recent years, these particles have been discussed as promising alternatives to organic fluorophosphors and quantum dots in the field of medical imaging.  相似文献   

12.
We report remarkable multiphoton absorption properties of DNA intercalating ruthenium complexes: (1) [Ru(phen)(2)dppz](2+); (2) [(11,11'-bidppz)(phen)(4)Ru(2)](4+); (3) [11,11'-bipb(phen)(4)Ru(2)](4+). Two-photon spectra in the range from 460 to 1100 nm were measured using the Z-scan technique. In particular, complex 2 was found to exhibit very strong two- and three-photon absorption properties, which could be an effect of symmetric charge transfer from the ends towards the middle of the conjugated dimeric orbital system. We propose that these molecules could provide a new generation of DNA binding nonlinear chromophores for wide applications in biology and material science. The combination of a large two-photon cross section and strong luminescence quantum yields for the molecules when intercalated makes the compounds uniquely bright and photo-stable probes for two-photon luminescence imaging and also promising as enhanced photosensitizers in two-photon sensitizing applications.  相似文献   

13.
In the analysis of molecular structure and local order in heterogeneous samples, multiphoton excitation of fluorescence affords chemically specific information and high-resolution imaging. This report presents the results of an investigation that secures a detailed theoretical representation of the fluorescence polarization produced by one-, two-, and three-photon excitations, with orientational averaging procedures being deployed to deliver the fully disordered limits. The equations determining multiphoton fluorescence response prove to be expressible in a relatively simple, generic form, and graphs exhibit the functional form of the multiphoton fluorescence polarization. Amongst other features, the results lead to the identification of a condition under which the fluorescence produced through the concerted absorption of any number of photons becomes completely unpolarized. It is also shown that the angular variation of fluorescence intensities is reliable indicator of orientational disorder.  相似文献   

14.
The formation of spatially localized regions of DNA damage by multiphoton absorption of light is an attractive tool for investigating DNA repair. Although this method has been applied in cells, little information is available about the formation of lesions by multiphoton absorption in the absence of exogenous or endogenous sensitizing agents. Therefore, we have investigated DNA damage induced in vitro by direct two-photon absorption of frequency-doubled femtosecond pulses from a Ti:sapphire laser. We first developed a quantitative polymerase chain reaction assay to measure DNA damage, and determined that the quantum yield of lesions formed by one-photon absorption of 254 nm light is 7.86×10(-4). We then measured the yield of lesions resulting from exposure to the visible femtosecond laser pulses, which exhibited a quadratic intensity dependence. The two-photon absorption cross section of DNA has a value (per nucleotide) of 2.6 GM at 425 nm, 2.4 GM at 450 nm, and 1.9 GM at 475 nm. A comparison of these in vitro results to several in vivo studies of multiphoton photodamage indicates that the onset of DNA damage occurs at lower intensities in vivo; we suggest possible explanations for this discrepancy.  相似文献   

15.
In this paper it is shown how simple application of irreducible tensor calculus provides a powerful method for the symmetry characterization of a wide range of multiphoton transitions in solids, liquids or gases. These methods provide for a systematic classification of distinct symmetry classes for any multiphoton process and facilitate devising suitable polarization studies for spectroscopic application. General results for multiphoton processes up to and including those involving four-photon interactions are presented in the tables for all the common molecular and crystallographic point groups. A new symmetry class labelling scheme is also introduced. Applications are illustrated by reference to two-, three- and four-photon absorption, resonance and non-resonance Raman scattering and hyper-Raman scattering. Whilst the examples principally involve electric dipole coupling, it is demonstrated how the effects of higher multipoles may be incorporated into the results.  相似文献   

16.
In multiphoton excited fluorescence (MPEF), high‐energy upconversion emission is obtained from low‐energy excitation by absorbance of two or more photons simultaneously. In a pressure‐induced fluorochromic process, the emission energy is switched by outer pressure stimuli. Now, five metal–organic frameworks containing the same ligand with simultaneous multiphoton absorption and pressure‐induced fluorochromic attributes were studied. One‐, two‐, and three‐photon excited fluorescence (1/2/3PEF) can be achieved in the frameworks, which exhibit pressure‐induced blue‐to‐yellow fluorochromism. The performances are closely dependent with the topologies, flexibilities, and packing states of the frameworks and chromophores therein. The multiphoton upconversion performance can be intensified by pressure‐related structural contraction. Over ten‐fold increment in the 2PA active cross‐section up to 2217 GM is achieved in pressed LIFM‐114 compared with the 210 GM for pristine sample at 780 nm.  相似文献   

17.
The laser multiphoton ionization (MPI) of fluoranthene in tetramethylsilane (TMS) and of azulene in n-tridecane, n-pentane, 2,2,4,4-tetramethylpentane, TMS and tetramethyltin is reported. Three distinct types of MPI mechanisms have been identified: two-photon ionization, stepwise three-photon ionization and mixed two- and three-photon ionization. The stepwise three-photon process consists of two-photon excitation, relaxation to a lower lying excited state with a lifetime comparable to the laser pulse duration (for azulene this state is the S2 while for fluoranthene both the S1 and S2 states) and subsequent ionization with the absorption of a third photon. The ionization threshold of azulene in each liquid has been determined and found to vary linearly with the V0 of the liquid.  相似文献   

18.
An extensive numerical analysis of experimental multiple-photon absorption (MPA) data on CF3Br is presented. The MPA spectra of CF3Br show several structures which have been identified as multiphoton resonances of different order and evidence has been found for the occurrence of multiphoton transitions starting from the first excited state. Different levels of approximation have been used in modelling the energy states in order to quantitatively reproduce the experimental features. The effect of rotations on the excitation spectra is discussed as well as the inclusion of a thermal distribution over the initial rotational and vibrational states.  相似文献   

19.
The development of highly efficient and stable blue‐emitting dyes to overcome some of the most important shortcomings of available chromophores is of great technological importance for modern optical, analytical, electronic, and biological applications. Here, we report the design, synthesis and characterization of new tailor‐made BODIPY dyes with efficient absorption and emission in the blue spectral region. The major challenge is the effective management of the electron‐donor strength of the substitution pattern, in order to modulate the emission of these novel dyes over a wide spectral range (430–500 nm). A direct relationship between the electron‐donor character of the substituent and the extension of the spectral hypsochromic shift is seen through the energy increase of the LUMO state. However, when the electron‐donor character of the substituent is high enough, an intramolecular charge‐transfer process appears to decrease the fluorescence ability of these dyes, especially in polar media. Some of the reported novel BODIPY dyes provide very high fluorescence quantum yields, close to unity, and large Stokes shifts, leading to highly efficient tunable dye lasers in the blue part of the spectrum; this so far remains an unexploited region with BODIPYs. In fact, under demanding transversal pumping conditions, the new dyes lase with unexpectedly high lasing efficiencies of up to 63 %, and also show high photostabilities, outperforming the laser action of other dyes considered as benchmarks in the same spectral region. Considering the easy synthetic protocol and the wide variety of possible substituents, we are confident that this strategy could be successfully extended for the development of efficient blue‐edge emitting materials and devices, impelling biophotonic and optoelectronic applications.  相似文献   

20.
《Chemical physics》1986,101(3):337-344
The dependence of multiphoton excitation of SF6 on laser intensity has been theoretically studied by using two different quantum-mechanical approaches. The results, which are in satisfactory agreement with available experiments, show a dependence of multiphoton absorption already at intensities of some MW/cm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号