首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using Langevin dynamics simulations, we investigate the dynamics of chaperone-assisted translocation of a flexible polymer through a nanopore. We find that increasing the binding energy ε between the chaperone and the chain and the chaperone concentration N(c) can greatly improve the translocation probability. Particularly, with increasing the chaperone concentration a maximum translocation probability is observed for weak binding. For a fixed chaperone concentration, the histogram of translocation time τ has a transition from a long-tailed distribution to a gaussian distribution with increasing ε. τ rapidly decreases and then almost saturates with increasing binding energy for a short chain; however, it has a minimum for longer chains at a lower chaperone concentration. We also show that τ has a minimum as a function of the chaperone concentration. For different ε, a nonuniversal dependence of τ on the chain length N is also observed. These results can be interpreted by characteristic entropic effects for flexible polymers induced by either the crowding effect from a high chaperone concentration or the intersegmental binding for the high binding energy.  相似文献   

2.
Using Langevin dynamics simulations, we investigate the dynamics of polymer translocation into a circular nanocontainer through a nanopore under a driving force F. We observe that the translocation probability initially increases and then saturates with increasing F, independent of φ, which is the average density of the whole chain in the nanocontainer. The translocation time distribution undergoes a transition from a Gaussian distribution to an asymmetric distribution with increasing φ. Moreover, we find a nonuniversal scaling exponent of the translocation time as chain length, depending on φ and F. These results are interpreted by the conformation of the translocated chain in the nanocontainer and the time of an individual segment passing through the pore during translocation.  相似文献   

3.
Noting the limitations of the standard characterization of translocation dynamics, an incremental mean first passage process methodology is used to more completely map the unbiased translocation of a polymer through a nanopore. In this approach, the average time t(0) required to reach successively increasing displacements for the first time is recorded - a measure shown to be more commensurate with the mean first passage nature of translocation. Applying this methodology to the results of Langevin dynamics simulations performed in three dimensions across a range of viscosities, a rich set of dynamics spanning regular diffusion at low viscosities to sub-diffusion at higher viscosities is revealed. Further, while the scaling of the net translocation time τ with polymer length N is shown to be viscosity-dependent, common regimes are found across all viscosities: super-diffusive behaviour at short times, an N-independent backbone consistent with τ ~ N(2.0) at low viscosities and τ ~ N(2.2) at higher viscosities for intermediate times, and N-dependent deviations from the backbone near the completion of translocation.  相似文献   

4.
The translocation of a partially charged polymer through a neutral nanopore under external electrical field is studied by using dynamic Monte Carlo method on a simple cubic lattice. One monomer in the polymer is charged and it suffers a driving force when it locates inside the pore. Two time scales, mean first passage time τ(FP) with the first monomer restricted to never draw back into cis side and translocation time τ for polymer continuously threading through nanopore, are calculated. The first passage time τ(FP) decreases with the increase in the driving force f, and the dependence of τ(FP) on the position of charged monomer M is in agreement with the theoretical results using Fokker-Planck equation [A. Mohan, A. B. Kolomeisky, and M. Pasquali, J. Chem. Phys. 128, 125104 (2008)]. But the dependence of τ on M shows a different behavior: It increases with f for M < N/2 with N the polymer length. The novel behavior of τ is explained qualitatively from dynamics of polymer during the translocation process and from the free energy landscape.  相似文献   

5.
The authors have performed the Langevin dynamics simulation to investigate the unforced polymer translocation through a narrow nanopore in an impermeable membrane. The effects of solvent quality controlled by the attraction strength lambda of the Lennard-Jones cosine potential between polymer beads and beads on two sides of the membrane on the translocation processes are extensively examined. For polymer translocation under the same solvent quality on both sides of the membrane, the two-dimensional and three-dimensional simulations confirm the scaling law of tautrans approximately N1+2upsilon for the translocation in the good solvent, where tautrans is the translocation time, N is the chain length, and upsilon is the Flory exponent. For the three-dimensional polymer translocation under different solvent qualities on two sides of the membrane, the translocation efficiency may be notably improved. The scaling law between tautrans and N varies from tautrans approximately N1+2upsilon to tautrans approximately N with the increase of the difference of solvent qualities, and the crossover occurs at the theta temperature point, where a scaling law of tautrans approximately N1.27 is found. The simulation results here also show that the translocation time changes from a wide and asymmetric distribution with a long tail to a narrow and symmetric distribution with the increase of the difference of the solvent qualities.  相似文献   

6.
Nanoparticle electrophoretic translocation through a single nanopore induces a detectable change in the ionic current, which enables the nanopore-based sensing for various bio-analytical applications. In this study, a transient continuum-based model is developed for the first time to investigate the electrokinetic particle translocation through a nanopore by solving the Nernst-Planck equations for the ionic concentrations, the Poisson equation for the electric potential and the Navier-Stokes equations for the flow field using an arbitrary Lagrangian-Eulerian (ALE) method. When the applied electric field is relatively low, a current blockade is expected. In addition, the particle could be trapped at the entrance of the nanopore when the electrical double layer (EDL) adjacent to the charged particle is relatively thick. When the electric field imposed is relatively high, the particle can always pass through the nanopore by electrophoresis. However, a current enhancement is predicted if the EDL of the particle is relatively thick. The obtained numerical results qualitatively agree with the existing experimental results. It is also found that the initial orientation of the particle could significantly affect the particle translocation and the ionic current through a nanopore. Furthermore, a relatively high electric field tends to align the particle with its longest axis parallel to the local electric field. However, the particle's initial lateral offset from the centerline of the nanopore acts as a minor effect.  相似文献   

7.
We investigate the voltage-driven translocation of an inhomogeneously charged polymer through a nanopore by utilizing discrete and continuous stochastic models. As a simplified illustration of the effect of charge distribution on translocation, we consider the translocation of a polymer with a single charged site in the presence and absence of interactions between the charge and the pore. We find that the position of the charge that minimizes the translocation time in the absence of pore-polymer interactions is determined by the entropic cost of translocation, with the optimum charge position being at the midpoint of the chain for a rodlike polymer and close to the leading chain end for an ideal chain. The presence of attractive and repulsive pore-charge interactions yields a shift in the optimum charge position toward the trailing end and the leading end of the chain, respectively. Moreover, our results show that strong attractive or repulsive interactions between the charge and the pore lengthen the translocation time relative to translocation through an inert pore. We generalize our results to accommodate the presence of multiple charged sites on the polymer. Our results provide insight into the effect of charge inhomogeneity on protein translocation through biological membranes.  相似文献   

8.
The influence of the chain stiffness on the translocation of semiflexible polyelectrolyte through a nanopore is investigated using Langevin dynamics simulations. Results show that the translocation time τ increases with the bending modulus kθ because of the increase of viscous drag forces with kθ. We find that the relation between τ and kθ, the asymptotic behavior of τ on the polyelectrolyte length N, and the scaling relation between τ and the driving force f are dependent on kθ and N. Our simulation results show that the semiflexible polyelectrolyte chain can be regarded as either a flexible polyelectrolyte at small kθ or large N where its radius of gyration RG is larger than the persistence length Lp or a stiff polyelectrolyte at large kθ or short N where RG < Lp. Results also show that the out‐of‐equilibrium effect during the translocation becomes weak with increasing kθ. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 912–921  相似文献   

9.
For the translocation of a polymer through a nanopore, a quasistatic assumption for the dynamics yields a tractable form for the entropic barrier. Although this is a much simplified model, interesting features such as robust scaling emerge from its application. To explore these details, we present a method of mapping the translocation process as an incremental mean first passage problem. In this approach, the quantity of interest is the average first time t(0) at which the polymer achieves a displacement of Δs in the translocation coordinate s. Constructing scenarios with different initial conditions and boundary conditions, analytic and exact numerical approaches are used to resolve the dynamics of translocation in detail and generate new insight into the nature of the entropic barrier.  相似文献   

10.
The electrical current through nucleotide junctions (guanine [G], cytosine [C], adenine [A], and thymine [T] bases sandwiched between Ag atoms) was calculated using the electron propagator theory (Keldysh–Green function formalism). The magnitudes of the calculated currents change in the following hierarchy: I A > I G > I C > I T. The difference in the current magnitudes implies the possibility of nucleotide identification by measuring the current they conduct during DNA translocation through a nanopore.  相似文献   

11.
Zhang M  Ai Y  Sharma A  Joo SW  Kim DS  Qian S 《Electrophoresis》2011,32(14):1864-1874
Electrokinetic particle translocation through a nanopore containing a floating electrode is investigated by solving a continuum model, composed of the coupled Poisson-Nernst-Planck (PNP) equations for the ionic mass transport and the modified Stokes equations for the flow field. Two effects due to the presence of the floating electrode, the induced-charge electroosmosis (ICEO) and the particle-floating electrode electrostatic interaction, could significantly affect the electrokinetic mobility of DNA nanoparticles. When the electrical double layers (EDLs) of the DNA nanoparticle and the floating electrode are not overlapped, the particle-floating electrode electrostatic interaction becomes negligible. As a result, the DNA nanoparticle could be trapped near the floating electrode arising from the induced-charge electroosmosis when the applied electric field is relatively high. The presence of the floating electrode attracts more ions inside the nanopore resulting in an increase in the ionic current flowing through the nanopore; however, it has a limited effect on the deviation of the current from its base current when the particle is far from the pore.  相似文献   

12.
Combining the advection-diffusion equation approach with Monte Carlo simulations we study chaperone driven polymer translocation of a stiff polymer through a nanopore. We demonstrate that the probability density function of first passage times across the pore depends solely on the Pe?clet number, a dimensionless parameter comparing drift strength and diffusivity. Moreover it is shown that the characteristic exponent in the power-law dependence of the translocation time on the chain length, a function of the chaperone-polymer binding energy, the chaperone concentration, and the chain length, is also effectively determined by the Pe?clet number. We investigate the effect of the chaperone size on the translocation process. In particular, for large chaperone size, the translocation progress and the mean waiting time as function of the reaction coordinate exhibit pronounced sawtooth-shapes. The effects of a heterogeneous polymer sequence on the translocation dynamics is studied in terms of the translocation velocity, the probability distribution for the translocation progress, and the monomer waiting times.  相似文献   

13.
We investigate the problem of polymer translocation through a nanopore in the absence of an external driving force. To this end, we use the two-dimensional fluctuating bond model with single-segment Monte Carlo moves. To overcome the entropic barrier without artificial restrictions, we consider a polymer which is initially placed in the middle of the pore and study the escape time tau required for the polymer to completely exit the pore on either end. We find numerically that tau scales with the chain length N as tau approximately N(1+2nu), where nu is the Flory exponent. This is the same scaling as predicted for the translocation time of a polymer which passes through the nanopore in one direction only. We examine the interplay between the pore length L and the radius of gyration R(g). For LR(g), we find tau approximately N. In addition, we numerically find the scaling function describing crossover between short and long pores. We also show that tau has a minimum as a function of L for longer chains when the radius of gyration along the pore direction R( parallel) approximately L. Finally, we demonstrate that the stiffness of the polymer does not change the scaling behavior of translocation dynamics for single-segment dynamics.  相似文献   

14.
We investigate the dynamics of polymer translocation through a nanopore under an externally applied field using the two-dimensional fluctuating bond model with single-segment Monte Carlo moves. We concentrate on the influence of the field strength E, length of the chain N, and length of the pore L on forced translocation. As our main result, we find a crossover scaling for the translocation time tau with the chain length from tau approximately N2nu for relatively short polymers to tau approximately N1+nu for longer chains, where nu is the Flory exponent. We demonstrate that this crossover is due to the change in the dependence of the translocation velocity v on the chain length. For relatively short chains v approximately N-nu, which crosses over to v approximately N(-1) for long polymers. The reason for this is that with increasing N there is a high density of segments near the exit of the pore, which slows down the translocation process due to slow relaxation of the chain. For the case of a long nanopore for which R parallel, the radius of gyration Rg along the pore, is smaller than the pore length, we find no clear scaling of the translocation time with the chain length. For large N, however, the asymptotic scaling tau approximately N1+nu is recovered. In this regime, tau is almost independent of L. We have previously found that for a polymer, which is initially placed in the middle of the pore, there is a minimum in the escape time for R parallel approximately L. We show here that this minimum persists for weak fields E such that EL is less than some critical value, but vanishes for large values of EL.  相似文献   

15.
Following our previous study of a Gaussian chain translocation, we have investigated the transport of a self-avoiding chain from one sphere to another sphere through a narrow pore, using the self-consistent field theory formalism. The free energy landscape for polymer translocation is significantly modified by excluded volume interactions among monomers. The free energy barrier for the placement of one of the chain ends at the pore depends on the chain length N nonmonotonically, in contrast to the N-independence for Gaussian chains. This results in a nonmonotonic dependence of the average arrival time [tau0] on N for self-avoiding chains. When the polymer chain is partitioned between the donor and recipient spheres, a local free energy minimum develops, depending on the strength w of the excluded volume interaction and the relative sizes of the donor and recipient spheres. If the sizes of spheres are comparable, the average translocation time tau (the average time taken by the polymer, after the arrival at the pore, to convert from the donor to the recipient) increases with an increase in w for a fixed N value. On the other hand, for the highly asymmetric sizes of the donor and recipient spheres, tau decreases with an increase in w. As in the case of Gaussian chains, tau depends nonmonotonically on the pore length.  相似文献   

16.
We theoretically study kinetics of a polymer threading through a pore embedded in a flat membrane. We numerically solve three coupled kinetic equations for the number n(1) of polymer segments in one side of the membrane and expansion factors of the polymer chain in each side of the membrane. We find the time evolution n(1) proportional to t(1/(1+nu)) at late stages and the translocation time tau(t) is scaled as tau(t) proportional to 1+nu) for large number n of the polymer segments, where nu is the effective size exponent of the radius of gyration of the polymer. When the polymer is translocated into a region with a good solvent condition (nu=3/5), we obtain n(1) proportional to t(5/8) and tau(t) proportional to n(8/5).  相似文献   

17.
The translocation time τ of partially charged polymers through a neutral nanopore is calculated using Fokker–Planck equation with adsorbing–adsorbing boundary conditions. For the polymer with one charged monomer, we find that τ is dependent on the position of the charged monomer and on the magnitude of the driving force f inside the nanopore. When the charge is located at the front half of the polymer chain, τ is larger than that of neutral polymer and increases with f. When the charge is located at the back half, it is smaller than that of the neutral polymer and decreases with increasing f. We have also studied the behavior of a symmetrical polymer with two like charges located symmetrically in the chain and that of an asymmetrical polymer with two unlike charges. Moreover, we have calculated the translocation time for a general condition of polymer with two randomly distributed charges. All results show that τ is dependent on the positions of charges in the polymer chain and on the magnitude of the driving force. The results can be explained qualitatively by the free‐energy landscape of polymer translocation. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1017–1025  相似文献   

18.
Graphene nanopore has been promising the ultra‐high resolution for DNA sequencing due to the atomic thickness and excellent electronic properties of the graphene monolayer. The dynamical translocation phenomena and/or behaviors underneath the blocked ionic current, however, have not been well unveiled to date for the translocation of DNA electrophoretically through a graphene nanopore. In this report, the assessment on the sensitivity of ionic current to instantaneous statuses of DNA in a 2.4 nm graphene nanopore was carried out based on the all‐atom molecular dynamics simulations. By filtering out the thermal noise of ionic current, the instantaneous conformational variations of DNA in a graphene nanopore have been unveiled from the fluctuations of ionic current, because of the spatial blockage effect of DNA against ionic current. Interestingly, the neighborhood effect of DNA against ionic current was also observed within a distance of 1.5 nm nearby the graphene nanopore, suggesting the further precise control for DNA translocation through a graphene nanopore in gene sequencing. Moreover, the sensitivity of the blocked ionic current toward the instantaneous conformations of DNA in a graphene nanopore demonstrates the great potential of graphene nanopores in the dynamics analysis of single molecules.  相似文献   

19.
Dynamic Monte Carlo simulation of a bead-spring model of flexible macromolecules threading through a very narrow pore in a very thin rigid membrane are presented, assuming at the cis side of the membrane a purely repulsive monomer-wall interaction, while the trans side is attractive. Two choices of monomer-wall attraction epsilon are considered, one choice is slightly below and the other slightly above the "mushroom to pancake" adsorption threshold epsilon(c) for an infinitely long chain. Studying chain lengths N=32, 64, 128, and 256 and varying the number of monomers N(trans) (time t=0) that have already passed the pore when the simulation started, over a wide range, we find for epsilonepsilon(c) a finite number N(trans)(t=0) suffices that the translocation probability is close to unity. In the case epsilonepsilon(c), we find that the translocation time scales as tau proportional, variant N(1.65+/-0.08). We suggest a tentative scaling explanation for this result. Also the distribution of translocation times is obtained and discussed.  相似文献   

20.
Ai Y  Qian S 《Electrophoresis》2011,32(9):996-1005
Nanopore-based sensing of single molecules is based on a detectable change in the ionic current arising from the electrokinetic translocation of individual nanoparticles through a nanopore. In this study, we propose a continuum-based model to investigate the dynamic electrokinetic translocation of a cylindrical nanoparticle through a nanopore and the corresponding ionic current response. It is the first time to simultaneously solve the Poisson-Boltzmann equation for the ionic concentrations and the electric field contributed by the surface charges of the nanopore and the nanoparticle, the Laplace equation for the externally applied electric field, and the modified Stokes equations for the flow field using an arbitrary Lagrangian-Eulerian method. Current blockade due to the particle translocation is predicted when the electric double layers (EDLs) of the particle and the nanopore are not overlapped, which is in qualitative agreement with existing experimental observations. Effects due to the electric field intensity imposed, the EDL thickness, the nanopore's surface charge, the particle's initial orientation and lateral offset from the nanopore's centerline on the particle translocation including both translation and rotation, and the ionic current response are comprehensively investigated. Under a relatively low electric field imposed, the particle experiences a significant rotation and a lateral movement. However, the particle is aligned with its longest axis parallel to the local electric field very quickly due to the dielectrophoretic effect when the external electric field is relatively high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号