首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The aim of this study was to label exorphin C with 99mTc and to examine its usefulness as opioid receptor binding radiopharmaceutical in Albino Wistar rats. Exorphin C, which is a peptide with 5 aminoacids, was labeled with 99mTc using glucoheptonate (GH) as a bifunctional chelating agent. Labeling efficiency was higher than 98%. The compound was stable for at least 5 hours at room temperature. Mammary tumor bearing Albino Wistar rats were imaged using gamma-camera. Biodistribution studies were also performed. Results demonstrated that 99mTc-glucoheptonate-exorphin C (99mTc-GE) analogs may be useful as a new class of receptor-binding peptides for the diagnosis and therapy of some cancer diseases related with opioid receptor-expressing tissues.  相似文献   

2.
A conjugate of 6-hydrazinopyridine-3-carboxylic acid (HYNIC) with aminomethylenediphosphonic acid (AMDP) was synthesized through a multiple-step reaction. HYNIC–AMDP could be labeled easily and efficiently with 99mTc using N-(2-hydroxy-1,1-bis(hydroxymethyl)ethyl)glycine (tricine) as coligand to form the 99mTc–HYNIC–AMDP complex in high yield (> 95%). Its partition coefficient indicated that it was a good hydrophilic complex. The biodistribution studies of 99mTc–HYNIC–AMDP in normal ICR mice showed that this complex had high bone uptake and low or negligible accumulation in non-target organs. As compared with 99mTc–MDP, 99mTc–HYNIC–AMDP had a higher bone uptake and the ratios of bone/blood and bone/muscle at early time after injection, suggesting that it could be potentially useful for bone imaging at an earlier time after injection according to further investigations of the biological behavior of this complex.  相似文献   

3.
The 99mTc(CO)3(H2O)-DEDT complex was prepared by a two-step procedure involving the preparation of the precursor fac-[99mTc(CO)3(H2O)3]+, followed by the addition of sodium salt of diethyl dithiocarbamate (DEDT). The radiochemical purity (RCP) of the product was over 90% as measured by thin layer chromatography (TLC). No decomposition of the complex at room temperature was observed over a period of 6 hours. Its partition coefficient indicated that it was a lipophilic complex. The electrophoresis results showed the complex was neutral. Biodistribution in mice demonstrated that the complex can penetrate the intact blood-brain barrier (BBB) and the brain uptake (ID%/g) was 4.22 at 5-minute post-injection, suggesting the complex may lead to a further development of the radiopharma ceutical as a brain perfusion tracer.  相似文献   

4.
5-HT1A receptor is associated with a variety of pathophysiology of neuropsychiatric disorders. Accordingly, we have synthesized a new 5-HT1A receptor ligand (HYNIC-MPP4) and labeled it with 99mTc using N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA) as coligand. 99mTc-HEDTA/HYNIC-MPP4 was prepared under pH 6 at room temperature. Biodistribution of 99mTc-HEDTA/HYNIC-MPP4 in normal mice showed that this complex had moderate brain uptake (0.60% ID·g−1 at 2 min p.i.) and good retention. The hippocampus had the highest radioactivity uptake at 2 min p.i. (1.84% ID⋆g−1). The ratio of Hipp/CB was 3.1 at 2 min p.i. and increased to 4.4 at 60 min p.i. After blocking with 8-hydroxy-2-(dipropylamino) tetralin, the uptake of hippocampus was decreased significantly from 1.84% ID·g−1 to 0.53% ID·g−1 at 2 min p.i., while the cerebellum had no significant decrease. This 99mTc complex could be a potent agent for 5-HT1A receptor imaging. Supported by the National Natural Science Foundation of China (Grant No. 20401004) and the Analysis and Test fund of Beijing Normal University  相似文献   

5.
A novel 99mTc nitrido xanthate complex 99mTcN(IPEXT)2 (IPEXT: isopentyl xanthate) has been synthesized by the reduction of 99mTcO4 into [99mTcN]2+ with stannous chloride in the presence of succinic dihydrazide and propylenediamine tetraacetic acid, followed by the addition of the corresponding xanthate ligand. The radiochemical purity of the complex was over 90% as measured by thin layer chromatography (TLC). No decomposition of the complex at room temperature was observed over a period of 6 hours. Its partition coefficient indicated that it was a lipophilic complex. The electrophoresis results showed the complex was neutral. Biodistribution in mice showed that the 99mTcN(IPEXT)2 complex accumulated in the heart with high uptake. The heart uptake (%IDg) was 8.00% at 5-minute post-injection, but the heart/lung, heart/liver and heart/blood ratios were not high, thereby, restricting the use of the complex as a good myocardial imaging agent.  相似文献   

6.
A conjugate of 6-hydrazinopyridine-3-carboxylic acid (HYNIC) with the amino analogue of metronidazole (MN) was synthesized through a multiple-step reaction. HYNIC-MN could be labeled easily and efficiently with 99mTc using N-(2-hydroxy-1,1-bis(hydroxymethyl)ethyl)glycine (tricine) and ethylenediamine -N,N′-diacetic acid (EDDA) as coligands to form the 99mTc–HYNIC–MN complex in high yield (>95%). Its partition coefficient indicated that it was a good hydrophilic complex. The tumor cell experiment showed that the 99mTc–HYNIC–MN complex had a certain hypoxic selectivity. The biodistribution studies of 99mTc–HYNIC–MN in Kunming mice bearing S180 tumor showed a favorable tissue distribution profile with high tumor uptake, and low or negligible accumulation in non-target organs, suggesting 99mTc–HYNIC–MN would be a novel potential tumor hypoxia imaging agent.  相似文献   

7.
Tumors such as prostate, small cell lung cancer, breast, gastric and colon cancer are known to overexpress receptors to bombesin (BBN). In this study, a new bombesin analogue was labeled with 99mTc via HYNIC and tricine/EDDA as coligands and investigated further. HYNIC-GABA-Bombesin (7–14) NH2 was synthesized using a standard Fmoc strategy. Labeling with 99mTc was performed at 100 °C for 10 min and radiochemical analysis involved ITLC and HPLC methods. The stability of radiopeptide was checked in the presence of humane serum at 37 °C up to 24 h. The receptor bound internalization and externalization rates were studied in GRP receptor expressing PC-3 cells. Biodistribution of radiopeptide was studied in nude mice bearing PC-3 tumor. Labeling yield of >98% was obtained corresponding to a specific activity of ~2.6 MBq/nmol. Peptide conjugate showed good stability in the presence of human serum. The radioligand showed high and specific internalization into PC-3 cells (14.63 ± 0.41% at 4 h). In biodistribution studies, a receptor-specific uptake was observed in GRP-receptor-positive organs so that after 4 h the uptakes in mouse tumor and pancreas were 1.31 ± 0.18 and 1.2 ± 0.13% ID/g, respectively.  相似文献   

8.
Radiolabeled fatty acids as myocardial metabolic agent are used for detecting ischemic heart disease, however, no 99mTc-labeled fatty acids have potential use in clinical diagnosis. In this work, five fatty acid analogues labeled with 99mTc were firstly synthesized and characterized, their biological behaviors were investigated. All Radiotracers had good stability when incubated in rat serum for 3 h at 37 °C. 99mTc -CpT-12-ODPPA (8b) showed higher initial myocardial uptake (8.17% ID/g at 1 min postinjection) and good heart/blood ratio (2.58 at 30 min postinjection). 99mTc-11-dpa-OUFA (2b) as positively charged lipophilic compounds had reasonable heart uptake (5.59% ID/g at 1 min postinjection) and good retention (1.89% ID/g at 60 min postinjection). Unfortunately, no great improvement was obtained by the five 99mTc-labeled fatty acid analogues for the short myocardial retention and poor heart/liver ratios.  相似文献   

9.
2,2′-[(8-hydroxyquinolin-7-yl)methylazanediyl]diacetic acid (HQMADA) was synthesized via reaction of 8-hydroxyquinoline with iminodiacetic acid in presence of paraformaldehyde with a yield of 27%. The obtained compound was well characterized via different analytical techniques. Labeling of the synthesized compound with technetium-99m in pertechnetate form (99mTcO4 ) in the presence of stannous chloride dihydrate was carried out via chelation reaction. The reaction parameters that affect the labeling yield such as HQMADA concentration, stannous chloride dihydrate concentration, pH of the reaction mixture, and reaction time were studied to optimize the labeling conditions. Maximum radiochemical yield of 99mTc-HQMADA complex (91.9%) was obtained by using 1.5 mg HQMADA, 50 μg SnCl2·2H2O, pH 8 and 30 min reaction time. Biodistribution studies in mice were carried out in experimentally induced infection in the left thigh using E. coli. 99mTc-HQMADA complex showed higher uptake (T/NT = 5.5 ± 0.3) in the infectious lesion than the commercially available 99mTc-ciprofloxacin (T/NT = 3.8 ± 0.8). Biodistribution studies for 99mTc-HQMADA complex in Albino mice bearing septic and aseptic inflammation models showed that 99mTc-HQMADA complex able to differentiate between septic and aseptic inflammation.  相似文献   

10.
The dimercaptosuccinic acid metronidazole ester (DMSAMe) was synthesized and radiolabeled with 99mTc to form the 99mTc-DMSAMe complex in high yield. The radiochemical purity of the 99mTc-DMSAMe complex was over 90%, as measured by TLC and by HPLC, without any notable decomposition at room temperature over a period of 6 h. Its partition coefficient indicated that it was a lipophilic complex. The tumor cell experiment and the biodistribution in mice bearing S 180 tumor showed that the 99mTc-DMSAMe complex had a certain hypoxic selectivity and accumulated in the tumor with high uptake and good retention. The tumor/blood and tumor/muscle ratios increased with time, suggesting it would be a possible tumor hypoxia imaging agent.  相似文献   

11.
A ligand of N-2-(furylmethyl iminodiacetic acid) (FMIDA) has been easily labeled by a tetradentate chelating agent of [99mTc]. Factors like a stannous chloride solution as a reducing agent (100 μg), substrate amount (100 μg), pH (7), in vitro stability (8 h) and temperature (37 °C) have been systematically studied to optimize high radiochemical yield (98.0%). The radiochemical conversion was calculated on thin-layer chromatography, paper electrophoresis, and high performance liquid chromatography. Biodistribution study showed that this complex was removed from the kidneys and bladder path way during 1 h post injection. Therefore, [99mTc]FMIDA may be used as renal function radiotracer.  相似文献   

12.
Pyrroloquinoline quinone (PQQ), an essential nutrient, antioxidant, redox modulator and nerve growth factor found in a class of enzymes called quinoproteins, was labeled with 99mTc by using stannous fluoride (SnF2) method. Radiolabeling qualification, quality control and characterization of 99mTc-PQQ and its biodistribution studies in mice were performed and discussed. Effects of pH values, temperature, time and reducing agents concentration on the radiolabeling yield were investigated. The quality control procedure of 99mTc-PQQ was determined by thin layer chromatography (TLC), radio high-performance liquid chromatography (RHPLC) and paper electrophoresis methods. The average radiolabeling yield was 94 ± 1% under optimum conditions of 0.99 mg of PQQ, 30 μg of SnF2, 0.5 mg of ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) and 18.5 MBq of Na99mTcO4 at pH 6 and 25 °C with a response volume of 1 ± 0.1 mL. 99mTc-PQQ was stable and anionic. Lipid–water partition coefficient of 99mTc-PQQ was −1.49 ± 0.16. The pharmacokinetics parameters of 99mTc-PQQ were t 1/2α = 18.16 min, t 1/2β = 100.45 min, K 12 = 0.013 min−1, K 21 = 0.017 min−1, K e = 0.016 min−1, AUC (area under the curve) = 1040.78 ID% g−1 min and CL (plasma clearance) = 0.096 mL min−1. The dual-exponential equation was Y = 10.88e−0.038t  + 5.21e−0.0069t . The biodistribution of 99mTc-PQQ was studied in ICR (Institute for Cancer Research 7701 Burhelme Are., Fox Chase, Philadelphia, PA 1911 USA) mice. In vitro autoradiographic studies clearly showed that the 99mTc-PQQ radioactivity accumulated predominantly in the hippocampus and cortex, which had a high density of N-methyl-d-aspartate Receptor (NMDAR). The enrichment can be blocked by NMDAR redox modulatory site antagonists-ebselen (EB) and 99mTc-PQQ is therefore a promising candidate for the molecular imaging of NMDAR. To date, however, there have been no studies characterizing 99mTc-PQQ.  相似文献   

13.
The aim of this study is to develop cerebral radiotracers for central nervous system receptors imaging. The synthesis, characterization and biological evaluation of two aryl piperazine 99mTc-radiocomplexes based on the piano stool motif [CpM(CO3)] (Cp = cyclopentadienyl, M = 99mTc/Re) is reported. The 99mTc-radiocomplexes were obtained quickly (time < 5 min) with high radiochemical yields. The 99mTc-radiocomplexes characterized by high performance liquid chromatography comparison with the rhenium surrogates have both a suitable lipophilicity and are able to cross the blood brain barrier with 0.43 ± 0.05 and 1.96 ± 0.06% ID/g of brain uptake, at 10 min post injection.  相似文献   

14.
Summary This investigation focused on the labeling of pefloxacin, a fluoroquinolone antibacterial agent, with 99mTc to form 99mTc-pefloxacin complex. The labeling process was done by direct addition of pertechnetate in isotonic solution to Sn-pefloxacin solution. The labeling technique is effective, as a high labeling yield (98%) was obtained after 30-minute reaction time. Different factors were found that influenced this labeling reaction: 0.5 mg pefloxacin or more must be used to prevent the formation of colloids in the reaction medium. Fifty micrograms of stannous chloride dihydrate were found to be sufficient to reduce all pertechnetate with activity ranging from 37 to 3700 MBq without the detection of free pertechnetate or colloids in the reaction mixture. The pH of the reaction medium was found to play an important role in the labeling process. The labeling reaction proceeds well at neutral pH (pH 6) but at acidic pH value (pH 4 or below) the yield of 99mTc-pefloxacin complex decreased markedly to a labeling yield of 5%. The reaction mixture must be heated to 100 °C in an oil bath to enhance the formation of the 99mTc-pefloxacin complex. The biodistribution data show that 99mTc labeled pefloxacin was retained in infectious focus. The retention was specific since the abscess uptake of 99mTc-pefloxacin remained high as compared to the uptake of aseptic foci at 24-hour post injection. Also, the clearance of the tracer from other tissues is rapid on the contrary to its clearance from the septic focus. This supports the hypothesis that 99mTc-pefloxacin is retained at the infectious site because of its specific binding to the gyrase enzymes of bacterial cells.  相似文献   

15.
16.
Metronidazole (MTNZ) is an antiprotozoa drug, could be labeled with the 99mTc. MTZL could be used as an ideal vehicle to deliver radioactive decay energy of 99mTc to the sites of tumor, thus facilitate tumor imaging. The process of labeling was done using tin chloride as reducing agent. The optimum conditions required to label 25 μg MTZL were 100 μg stannous chloride, 30 min reaction time, room temperature at pH 7–9 using 0.5 M phosphate buffer. The radiochemical purity of the labeled compound, at the above conditions, was determined using paper chromatography. The yield was about 93%. About 2.5 × l06 of Ehrlich Ascites Carcinoma (EAC) was injected intrapritoneally (i.p) to produce ascites and intramuscularly (i.m) in the right thigh to produce solid tumor in female mice. Biodistribution studies were carried out by injecting solution of 99mTc-MTZL in normal and tumor bearing mice. The uptake in ascites was over 5% of the injected dose per gram tissue body weight, at 4 h post injection and above 4% in solid tumor. These data revealed localization of the tracer in the tumor tissues with high percentage sufficient to use 99 mTc MTZL as promising tool for diagnosis of tumor.  相似文献   

17.
In the present study, a novel 99mTc nitrido dithiocarbamate complex containing ether group, the bis(2-ethoxyethyl dithiocarbamato) nitrido 99mTc complex 99mTcN(EOEDTC)2 has been synthesized by the reduction of 99mTcO4 into [99mTcN]2+ with stannous chloride in the presence of succinic dihydrazide and propylenediamine tetraacetic acid, followed by the addition of the corresponding dithiocarbamate ligand. The radiochemical purity of the complex was over 90% as measured by thin layer chromatography (TLC). In vitro studies showed that the complex possessed good stability. Its partition coefficient indicated that it was lipophilic complex. The electrophoresis results showed the complex was neutral. Biodistribution in mice showed that the complex accumulated in the heart and brain with high initial uptake, suggesting the complex may lead to a further development of the radiopharmaceutical as a heart and brain perfusion tracer.  相似文献   

18.
99mTc-roxifiban was obtained in a high radiochemical yield (98.4%) by complexing ~750 MBq 99mTc with 2.5 mg roxifiban in the presence of 150 µg SnCl2·2H2O. Factors affecting the labelling yield were investigated and optimized. The complex was lipophilic and stable in saline and serum for more than 8 h. The complex structure prediction and molecular docking to its target activated GPIIb/IIIa receptor were performed. The tracer in vitro binding to activated platelets was high (27–32%). In vivo evaluation was performed through clearance, biodistribution and imaging studies in rats. All results supported the usefulness of the tracer as thrombus imaging agent.  相似文献   

19.
Technetium-99m is the principal radioisotope used in medical diagnostics; radionuclidic impurity is the major concern of its quality. This work presents a analytical method for sequential determination of all radionuclidic impurities listed in pharmacopoeia including gamma emitters, alpha emitters, 89Sr and 90Sr. Radioactive decay for removal of 99mTc, ion exchange and extraction chromatography for removal of 99Mo and 99Tc are effective for separation of interferences. Gamma spectrometry, LSC with alpha/beta discrimination, and Cherenkov counting using LSC are sensitive methods for measurement of the impurity radionuclides. The detection limits of this method are well meet the requirement of the quality control according to the limitation of the pharmacopoeia.  相似文献   

20.
A novel electrochemical process to avail clinical grade 99mTc from (n,γ)99Mo has been demonstrated. The electrochemical parameters were optimized to maximize the 99mTc yield with minimal 99Mo contamination. 99Mo/99mTc generators containing up to 29.6 GBq (800 mCi) 99Mo were developed and their performance were extensively evaluated for 10 days without changing the operating conditions. Very high radioactive concentration of 99mTcO4 of acceptable quality, commensurate with hospital radiopharmacy requirements could be availed from the system with >90% yield. The compatibility of the product for the formulation of 99mTc labeled radiopharmaceuticals such as 99mTc-DMSA and 99mTc-EC was found to be satisfactory in terms of high labeling yields. The proposed route represents an important step for enhancing the scope of accessing clinical grade 99mTc from low specific activity (n, γ)99Mo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号