首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The electrochemical performance of La0.8Sr0.2MnO3:Ce0.8Gd0.2O2 composite cathode was investigated for solid oxide fuel cell applications. Sol–gel, combustion, and solid-state syntheses yielded rhombohedral La0.8Sr0.2MnO3, whereas mechanochemical process gave cubic structure. X-ray diffraction results established good chemical stability of La0.8Sr0.2MnO3 with Ce0.8Gd0.2O2 composite cathode. Combustion synthesis was found best among all preparative methods on the basis of lowest area specific resistance 0.70 Ω cm2 at 800 °C. The activation energy E a = 1.09 ± 0.01 eV indicated absorption of O2 and was the rate-limiting process of cathode.  相似文献   

2.
A system consisting of a solid oxide electrolyte of the Ce0.9Gd0.1O2 − x (CGO) composition in contact with a two-layer cathode based on a nonstoichiometric composition (La0.8Sr0.2)0.95MnO3 ± δ (LSM1) and a stoichiometric perovskite La0.8Sr0.2MnO3 ± δ (LSM2) is prepared by the tape-casting process. It was shown that the best electrochemical characteristics are achieved for a three-layer system LSM2/{CGO-LSM1}/CGO sintered at 1410°C. The use of Ce-modified perovskites La0.8Sr0.2MnO3 ± δ and La0.6Sr0.6CoO3 ± δ as the collector layer of two-layer electrodes allows the electrochemical characteristics at moderately high temperatures (600–750°C) to be improved.  相似文献   

3.
Development of high performance cathodes with low polarization resistance is critical to the success of solid oxide fuel cell (SOFC) development and commercialization. In this paper, (La0.8Sr0.2)0.9MnO3 (LSM)–Gd0.2Ce0.8O1.9(GDC) composite powder (LSM ~70 wt%, GDC ~30 wt%) was prepared through modification of LSM powder by Gd0.2Ce0.8(NO3) x solution impregnation, followed by calcination. The electrode polarization resistance of the LSM–GDC cathode prepared from the composite powder was ~0.60 Ω cm2 at 750 °C, which is ~13 times lower than that of pure LSM cathode (~8.19 Ω cm2 at 750 °C) on YSZ electrolyte substrates. The electrode polarization resistance of the LSM–GDC composite cathode at 700 °C under 500 mA/cm2 was ~0.42 Ω cm2, which is close to that of pure LSM cathode at 850 °C. Gd0.2Ce0.8(NO3) x solution impregnation modification not only inhibits the growth of LSM grains during sintering but also increases the triple-phase-boundary (TPB) area through introducing ionic conducting phase (Gd,Ce)O2-δ, leading to the significant reduction of electrode polarization resistance of LSM cathode.  相似文献   

4.
Full conductivity, diffusion and oxygen exchange processes in composites (100 − x)La0.8Sr0.2Fe0.7Ni0.3O3 − δxCe0.9Gd0.1O1.95 (x is the volume fraction, 0 ≤ x ≤ 71.1%) at 700°C over the oxygen partial pressure range from 0.2 to 3 × 10−3 atm are studied by the electrical conductivity relaxation method. The composites’ conductivity was shown to decrease monotonically with the increasing of Ce0.9Gd0.1O1.95 fraction, while the oxygen chemical diffusion coefficient increased. The oxygen exchange constant is higher for the composites than for the individual phases of La0.8Sr0.2Fe0.7Ni0.3O3 − δ and Ce0.9Gd0.1O1.95. Possible reason of the dependence of the parameters D chem and k chem on the temperature, oxygen pressure, and the composite composition is the effect of the interface on the oxygen transfer processes. Most effective oxygen transfer occurs in the composites whose composition approaches La0.8Sr0.2Fe0.7Ni0.3O3 − δ-Ce0.9Gd0.1O1.95 (x = 71%).  相似文献   

5.
Remarkable power density was obtained for anode-supported solid oxide fuel cells (SOFCs) based on La0.8Sr0.2Ga0.8Mg0.2O3−δ (LSGM) electrolyte films, fabricated following an original procedure that allowed avoiding undesired reactions between LSGM and electrode materials, especially Ni. Electrophoretic deposition (EPD) was used for the fabrication of 30 μm-thick electrolyte films. Anode supports were made of La0.4Ce0.6O2−x (LDC). The LSGM powder was deposited by EPD on an LDC green tape-cast membrane added with carbon powder, both as pore former and substrate conductivity booster. A subsequent co-firing step at 1490 °C produced dense electrolyte films on porous LDC skeletons. Then, a La0.8Sr0.2Fe0.8Co0.2O3−δ (LSFC) cathode was applied by slurry-coating and calcined at 1100 °C. Finally, the porous LDC layer was impregnated with molten Ni nitrate to obtain, after calcination at 900 °C, a composite NiO–LDC anode. Maximum power densities of 780, 450, 275, 175, and 100 mW/cm2 at 700, 650, 600, 550, and 500 °C, respectively, were obtained using H2 as fuel and air as oxidant, demonstrating the success of the processing strategy. As a comparison, electrolyte-supported SOFCs made of the same materials were tested, showing a maximum power density of 150 mW/cm2 at 700 °C, more than 5 times smaller than the anode-supported counterpart.  相似文献   

6.
The polarization resistance of La0.6Sr0.4Co0.2Fe0.8O3?δ (LSCF)-infiltrated Ce0.9Gd0.1O1.95 cathodes was quantitatively explained using a simple model where the resistance scaled directly with the LSCF surface area, as estimated from cross-sectional fracture surfaces. The Tanner, Fung, Virkar composite cathode model was also applied and showed that ionic transport in these 25-μm-thick cathodes was not a significant limitation at 600 °C, but became more limiting at 700 °C. Calculated polarization resistances were within ~40% (without fitting parameters) of reported values.  相似文献   

7.
The effect of infiltrating on a La0.85Sr0.15MnO3/Ce0.9Gd0.1O1.95 11-layer electrochemical reactor with CeO2 and Ce0.8Pr0.2O2?δ was studied in propene oxidation at open-circuit voltage and under polarization as a function of reaction temperature. This work outlined the importance of catalytic and electrochemical properties of infiltrated material on the ability to increase propene conversion under polarization with good faradaic efficiency. Electrochemical impedance spectroscopy was used to study the effect of infiltration material on electrode properties. The infiltration of a mixed ionic and electronic conductor, like Ce0.8Pr0.2O2?δ , increased the electrode performance at low temperature but decreased the lifetime of the oxygen ion promoters on the catalyst/electrode surface, reducing the faradaic efficiency of the reaction. The infiltration of CeO2 provided high propene conversion at open circuit and high effect of polarization associated with good faradaic efficiency, especially at low temperature.  相似文献   

8.
With the aim of reducing the temperature of the solid oxide fuel cell (SOFC), a new high-performance perovskite cathode has been developed. An area-specific resistance (ASR) as low as 0.12 Ωcm2 at 600 °C was measured by electrochemical impedance spectroscopy (EIS) on symmetrical cells. The cathode is a composite between (Gd0.6Sr0.4)0.99Fe0.8Co0.2O3-δ (GSFC) and Ce0.9Gd0.1O1.95 (CGO10). Examination of the microstructure of the cathodes by scanning electron microscopy (SEM) revealed a possibility of further optimisation of the microstructure in order to increase the performance of the cathodes. It also seems that an adjustment of the sintering temperature will make a lowering of the ASR value possible. The cathodes were compatible with ceria-based electrolytes but reacted to some extent with zirconia-based electrolytes depending on the sintering temperature.  相似文献   

9.
Composite ceramic membranes, based on selected combinations of ionic conductors ((La0.9Sr0.1)0.98Ga0.8Mg0.2O3-δ—LSGM or Ce0.8Gd0.2O2-δ—CGO) and electronic/mixed conductors (La2Ni0.8Cu0.2O4+δ—LNC, La0.8Sr0.2Fe0.8Co0.2O3-δ—LSFC, La0.7Sr0.3MnO3-δ—LSM, and SrCoO3-δ – Sr2Fe3O6.5±δ—SCSF), were processed and characterized aiming at the identification of key features to be considered in the design and optimization of materials performance as mixed conductors. Although after almost complete reaction between constituents, the best permeability was observed for the LSGM/LSFC combination processed under moderate firing conditions. Ceria-based composites, while preserving a typical composite microstructure, and suffering small compositional changes due to interaction between constituents, behaved always below the result of an ideal combination of the best characteristics of the individual components. Materials interaction, from modest compositional changes to formation of new phases, with deep changes in nominal composition, can be understood both as a challenge requiring proper identification of ideal processing conditions for phase preservation, but also as an opportunity for the development of entirely new composites and materials with compositional heterogeneities at grain size level.  相似文献   

10.
Nano-sized La0.8Sr0.2MnO3 prepared by the polyethylene glycol assisting sol–gel method was applied as oxygen reduction catalyst in nonaqueous Li/O2 batteries. The as-synthesized La0.8Sr0.2MnO3 was characterized by X-ray diffraction (XRD), scanning electron microscopy, and Brunauer–Emmet–Teller measurements. The XRD results indicate that the sample possesses a pure perovskite-type crystal structure, even sintered at a temperature as low as 600 °C, whereas for solid-state reaction method it can only be synthesized above 1,200 °C. The as-prepared nano-sized La0.8Sr0.2MnO3 has a specific surface area of 32 m2 g−1, which is much larger than the solid-state one (1 m2 g−1), and smaller particle size of about 100 nm. Electrochemical results show that the nano-sized La0.8Sr0.2MnO3 has better catalytic activity for oxygen reduction, higher discharge plateau and specific capacity.  相似文献   

11.
李强*  赵辉  江瑞  郭力帆 《物理化学学报》2012,28(9):2065-2070
采用甘氨酸-硝酸盐法合成了中温固体氧化物燃料电池阴极材料La1.6Sr0.4Ni1-xCuxO4 (x=0.2, 0.4, 0.6,0.8), 利用X射线衍射(XRD)和扫描电子显微镜(SEM)对其结构和微观形貌进行了表征. 结果表明, 该阴极材料与固体电解质Ce0.9Gd0.1O1.95(CGO)在1000 °C烧结时不发生化学反应, 且烧结4 h 后, 二者之间可形成良好的接触界面. 利用电化学交流阻抗谱技术对阴极材料的电化学性能进行研究, 结果显示, 当Cu离子掺杂量(x)为0.6 时, La1.6Sr0.4Ni0.4Cu0.6O4阴极具有最小的极化电阻, 在空气中当测试温度为750 °C时, 极化电阻为0.35 Ω·cm2. 在不同氧分压条件下电化学阻抗谱分析结果表明, 电极上的两个氧还原反应主要包含氧离子从三相界面向电解质CGO 转移的过程和电荷的迁移过程, 其中电荷的迁移过程为电极反应的速率控制步骤.La1.6Sr0.4Ni0.4Cu0.6O4电极在空气中700 °C和阴极电流密度为45 mA·cm-2时, 阴极过电位为45 mV. 本研究的初步结果表明La1.6Sr0.4Ni1-xCuxO4材料是一种电化学性能较为优良的新型中温固体氧化物燃料电池(IT-SOFC)阴极材料.  相似文献   

12.
A phase inversion process was used to co-extrude cerium–gadolinium oxide (Ce0.9Gd0.1O1.95)/NiO–CGO dual-layer hollow fibres (HF), which were then sintered to form, respectively, the electrolyte and high porosity anode precursor of a solid oxide fuel cell (SOFC) with anode inner diameter of 0.8 mm. Graded CGO–lanthanum strontium cobalt ferrite (La0.6Sr0.4Fe0.8Co0.2O3) cathode layers were then painted onto the CGO electrolyte to form a micro-tubular HF-SOFC. With a carefully designed anode current collector, this produced maximum power densities of 1186–5864 W m? 2 at 450–570 °C. High magnification imaging analysis revealed large three-phase boundary regions within the anode, a dense electrolyte layer and clearly highlighted the multiple CGO–LSCF cermet and pure LSCF cathode layers. The performance of the HF-SOFC with a twenty millimetre active length showed no degradation after four thermal cycles between 300 °C and 570 °C.  相似文献   

13.
孟丽  王方中  王傲  蒲健  池波  李箭 《催化学报》2014,35(1):38-42
研究了新型固溶法合成La0.8Sr0.2MnO3(LSM)包覆Ba0.5Sr0.5Co0.8Fe0.2O3(BSCF)复合粉体(LSM-BSCF),并探讨了其作为中温固体氧化物燃料电池阴极材料的电化学性能。LSM-BSCF阴极结合了LSM和BSCF阴极的优点,不仅增大了三相界面,而且稳定了微观结构。当温度为600-750℃时,其极化阻抗为0.61-0.09 Ω·cm2。与溶液注入法制备的高性能电极相比,极大地提高了性能稳定性。  相似文献   

14.
In this paper, the ionic conductivities of La0.54Sr0.44Co0.2Fe0.8O3-δ and La0.6Sr0.4Co0.2Fe0.8O3-δ were measured by electron-blocked alternating current impedance analysis technique. The results show that the oxygen ion conductivity of La0.54Sr0.44Co0.2Fe0.8O3-δ is nearly five times higher than that of La0.6Sr0.4Co0.2Fe0.8O3-δ, which makes La0.54Sr0.44Co0.2Fe0.8O3-δ cathode more conductive than YSZ electrolyte. Consequently, the electrochemical reaction region is extended from the interface between the cathode and the electrolyte to the whole surface of the cathode grains, with a result of the cathode polarization overpotential being decreased and the cell electrical performance being improved. Besides, the XRD results show that both La0.54Sr0.44Co0.2Fe0.8O3-δ and La0.6Sr0.4Co0.2Fe0.8O3-δ begin to react with 8YSZ([Y2O3]0.08·[ZrO2]0.92) at 850 °C, but La0.54Sr0.44Co0.2Fe0.8O3-δ with a faster reaction rate. The thermal expansion experiments manifest that the two LSCFs have approximate thermal expansion coefficients, being about 14 × 10−6–15 × 10−6 K−1 from 500 °C to 700 °C, which is moderately higher than that of 8YSZ.  相似文献   

15.
Single-phase perovskite La0.6Sr0.4Co0.8Fe0.2O3-δ has been successfully prepared by using citrate-EDTA complexation method at relatively low calcination temperature. The structure and thermal decomposition process of the complex precursor have been investigated by means of differential scanning calorimetry-thermal gravimetric analysis (DSC/TGA), X-ray diffraction (XRD), and Fourier transform infrared spectroscopic (FT-IR) measurements. The precursor decomposed completely and started to form perovskite-type oxide above 420℃ according to the differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) results. Single-phase perovskite La0.6Sr0.4Co0.8Fe0.2O3-δ obtained has been confirmed from the XRD pattern, and no peak of SrCO3 was found by XR.D of the oxides synthesized at a relatively low temperature of 800 ℃. The reducibility of La0.6Sr0.4Co0.8Fe0.2O3-δ was also characterized by the temperature programmed reduction (TPR) technique. Disk shaped dense La0.6Sr0.4Co0.8Fe0.2O3-δ membrane was prepared by the isostatical pressing method. The oxygen flux rate of dense La0.6Sr0.4Co0.8Fe0.2O3-δ membrane was (2.8-18)×10-8 mol/(cm2·s) in the temperature range of 800-1 000℃.  相似文献   

16.
The double-perovskite Sr2NiMoO6−δ (SNMO) was investigated as an anode material of a solid oxide fuel cell (SOFC). With a 300 μm thick La0.9Sr0.1Ga0.8Mg0.2O3−σ (LSGM) disk as electrolyte and Ba0.5Sr0.5Co0.8Fe0.2O3−δ as the cathode, the SNMO anode showed power densities of 819 mW cm−2 in hydrogen at 1123 K. Moreover, there was no buffer layer between anode and electrolyte, which would reduce design techniques and save design cost. After test no chemical reaction was discovered between anode and electrolyte. The anode exhibited good conductivity and the value was around 60 S cm−1 in H2. Also it had almost linear thermal expansion from room temperature to 1253 K and the average thermal expansion coefficient was about 12.14 × 10−6 K−1, which was quite close to that of La0.9Sr0.lGa0.8Mg0.2O3 (12.17 × 10−6 K−1) electrolyte.  相似文献   

17.
Composite cathodes were synthesized via a citrate combustion method followed by an organic precipitation method. The cathodes were of K2NiF4-type crystal structure with x wt.% Ce0.9Gd0.1O1.95 (CGO)–(100 ? x) wt.% La1.96Sr0.04CuO4 + δ (LSC), where x = 0, 10, 20 and 30. The individual structural phases of the composite cathodes were characterized using a third-generation synchrotron source beamline powder X-ray diffractometer (XRD). The porous grain morphology of the CGO–LSC cathode composite for a symmetrical half-cell was determined from cross-sectional scanning electron microscopy images and elemental line profiles. The composite cathode was made of 20 wt.% CGO–80 wt.% LSC (CL20–80) and was coated onto a Ce0.9Gd0.1O1.95 electrolyte. It showed the lowest area specific resistance (ASR) of 0.07 Ω cm2 at 750 °C. An electrolyte-supported (300 μm thick) single-cell configuration of CL20–80/CGO/Ni-CGO attained a maximum power density of 626 mW cm? 2 at 700 °C. The unique composite composition of CL20–80 demonstrates enhanced electrochemical performance and good chemical compatibility with the CGO electrolyte, as compared with the pure LSC (CL0–100) cathode for IT-SOFCs.  相似文献   

18.
Transition metal oxide doped lanthanum gallates, La0.9Sr0.1Ga0.8M0.2O3 (where M=Co, Mn, Cr, Fe, or V), are studied as mixed ionic-electronic conductors (MIECs) for electrode applications. The electrochemical properties of these materials in air and in H2 are characterized using impedance spectroscopy, open cell voltage measurement, and gas permeation measurement. Three single cells based on La0.9Sr0.1Ga0.8 Mg0.2O3 (LSGM) electrolyte (1.13 to 1.65 mm thick) but with different electrode materials are studied under identical conditions to characterize the effectiveness of the lanthanum gallate-based MIECs for electrode applications. At 800 °C, a single cell using La0.9Sr0.1- Ga0.8Co0.2O3 as the cathode and La0.9Sr0.1Ga0.8Mn0.2O3 as the anode shows a maximum power density of 88 mW/cm2, which is better than that of a cell using Pt as both electrodes (20 mW/cm2) and that of a cell using La0.6Sr0.4CoO3 (LSC) as the cathode and CeO2-Ni as the anode (61 mW/cm2) under identical conditions. The performance of LSGM-based fuel cells with MIEC electrodes may be further improved by reducing the electrolyte thickness and by optimizing the microstructures of the electrodes through processing. Received: 9 January 1998 / Accepted: 1 May 1998  相似文献   

19.
Initialization is a critical processing step that has thus far limited the application of the single-chamber solid oxide fuel cell (SC-SOFC). In-situ initialization of a SC-SOFC with a nickel-based anode by methane–air mixtures was investigated. Porous Ru–CeO2 was used as a catalyst layer over a Ni-ScSZ cermet anode. Catalytic testing demonstrated Ru–CeO2 had high activity for methane oxidation. The Ru in the catalyst layer catalyzed the formation of syngas, which successfully reduced the nickel oxide to metallic nickel in the anode. Single cells with a La0.8Sr0.2MnO3 (LSM) cathode, initialized by this in-situ reduction method, delivered peak power densities of 205 and 327 mW cm−2 at 800 °C and 850 °C, respectively. Such performances were better than those of the cell without the Ru–CeO2 catalyst layer that was initialized by an ex-situ reduction method were.  相似文献   

20.
A new method of obtaining gastight ceramic based on CaZr0.95Sc0.05O3 – δ is presented. The microstructure and electric properties of the obtained samples, same as the behavior of composite electrodes in contact with this electrolyte, are studied for application of the obtained results in the technology of formation of electrochemical devices. The design of bilayer electrodes is suggested, in which the materials tested as the functional layer were layered lanthanum nickelate La2NiO4 + δ and substituted lanthanum nickelate La1.7Ca(Sr,Ba)0.3NiO4 + δ in combination with the electrolyte components of Ce0.8Sm0.2O2 – δ and BaCe0.89Gd0.1Cu0.01O3 – δ. The collector layer used was lanthanum nickelate–ferrite LaNi0.6Fe0.4O3 – δ and manganite La0.6Sr0.4MnO3 – δ that are characterized by high electron conductivity, low layer resistance and are close by their values of coefficient of linear thermal expansion to the materials of functional layers. Electrochemical activity of the obtained electrodes are compared with the characteristics of composite electrodes based on lanthanum ferrite–cobaltite La0.6Sr0.4Fe0.8Co0.2O3 – δ and deficient lanthanum manganite La0.75Sr0.2MnO3 – δ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号