首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
利用高光谱扫描技术检测小麦叶片叶绿素含量   总被引:4,自引:0,他引:4  
利用高光谱扫描技术对小麦叶片进行无损检测试验,探索精确测定小麦叶绿素含量的方法,为农作物生长状况、植物病理诊断等提供科学依据。研究选取90个样本作为校正集,30个样本作为预测集,获取叶片的高光谱反射图像,同时用传统的分光光度计方法测定其叶绿素含量。选取波长491~887 nm范围光谱,用多元散射校正、一阶导数、二阶导数3种方法处理,利用偏最小二乘法和逐步线性回归法分别建立了小麦叶片叶绿素含量与光谱信号间的数学模型。研究发现多元散射校正(MSC)结合二阶导数光谱的多元线性回归(SMLR)模型的效果较优,模型校正集和预测集决定系数分别为0.82和0.79,校正均方根误差和预测均方根误差分别为0.69和0.71。研究结果表明可以利用高光谱扫描技术检测小麦叶片叶绿素含量。  相似文献   

2.
提出一种利用可见/近红外光谱技术进行杉木林土壤全氮测定的方法.利用不同方法实现了土壤光谱的预处理,并以偏最小二乘回归算法(PLS)建立土壤氮含量估测模型对其进行比较分析,发现小波除噪结合多远散射校正能最有效地消除原始光谱的噪声与背景信息,此时PLS模型校正集与预测集R2分别为0.891与0.885.为优化模型,对预处理后的光谱数据采用主成分分析法(PCA)降维,以最小二乘支撑向量机回归算法(LS-SVR)建立了土壤氮含量估测模型,其校正集与预测集R2分别提高至0.921与0.917,具有比PLS算法更高的精度.结果表明:以可见/近红外光谱技术进行林地土壤氮含量快速监测是可行的,其中小波去噪结合多元散射校正系光谱预处理的优选方法,而LS-SVR则是建模的优选方法.  相似文献   

3.
针对基于固定特征波长的植被指数不能适用于多个生育期叶绿素含量的诊断这一问题,研究优化提出一种基于双波长计算光谱覆盖面积的叶绿素诊断植被指数,用于稳健地诊断多生育期的营养。以拔节期、孕穗期和扬花期的冬小麦为研究对象,采集其325~1 075 nm范围的冠层反射光谱,测定采样样本的叶绿素含量。采用小波去噪和多元散射校正算法对光谱数据进行预处理。通过相关性分析,确定生育期特征波长的迁移范围,进而提出了基于光谱覆盖面积的冬小麦叶绿素含量光谱诊断参数(modified normalized area over reflectance curve, MNAOC)。以信噪比(SNR)和平滑度指标(S)进行综合评价,小波去噪函数的最佳参数为(“sqtwolog”,“mln”,“3”,“db5”)。相关性分析结果表明,生育期特征波段的迁移范围为(700 nm,723 nm)。在分析MNAOC指数对叶绿素含量诊断分辨率的基础上,以0.5 mg·L-1的分辨率建立一元线性回归模型的结果为:拔节期R2c=0.840 1,R2v=0.823 7;孕穗期R2c=0.865 5,R2v=0.817 4;扬花期R2c=0.833 8,R2v=0.807 6。与ratio vegetation index(RVI)等5种双波长植被指数对比表明,由于700和723 nm计算的光谱面积包含了由于生育期导致的光谱动态迁移特征,使得MNAOC指数在模型精度上和多个生育期的普适性上,都优于其他双波长代数运算植被指数,为大田环境冬小麦生育期叶绿素含量诊断提供支持。  相似文献   

4.
花生中蛋白质含量与分布能够显著影响花生制品品质。利用高光谱图像结合化学计量学研究可视化花生中蛋白质含量分布的可行性。从校正后的花生图像的感兴趣区域(region of interest, ROI)中提取光谱信息,通过传统化学方法测定蛋白质含量。比对了不同光谱预处理和回归算法,以二阶导数(the second derivative, 2nd-der)为最佳的光谱预处理方法,偏最小二乘法(partial least squares, PLS)为最佳的回归算法。基于预处理后的光谱和花生蛋白质的化学值,建立全波长PLS模型,全波长模型具有良好的性能(校正集相关系数为0.91,校正集标准偏差0.86;预测集相关系数为0.86,预测集标准偏差为0.69)。利用回归系数法(regression coefficient, RC)从全波长模型中选择14个特征波长,建立2nd-der-RC-PLS特征波长模型,模型性能(校正集相关系数为0.86,校正集标准偏差1.03;预测集相关系数为0.80,预测集标准偏差为0.77)与全波长模型相当。采用2nd-der-RC-PLS算法将花生高光谱图像转变成蛋白质含量分布图。成对t检验判断凯氏定氮法与高光谱法无显著性差异。结果表明结合化学计量学的高光谱成像技术为测定花生中蛋白质含量分布提供了一种高效非破坏性方法。  相似文献   

5.
尖椒叶片叶绿素含量的近红外检测分析实验研究   总被引:10,自引:5,他引:5  
应用傅里叶漫反射近红外光谱技术探讨了尖椒叶片叶绿素含量的无损检测方法。利用偏最小二乘法和主成分回归法分别建立了尖椒叶片叶绿素含量与漫反射光谱间的数学模型,同时对不同光谱预处理方法和不同建模波段范围对模型的预测性能进行对比分析。结果表明,用傅里叶变换光谱仪采集的原始光谱经平滑和基线校正对结果的影响不是很明显;利用PLS建模获得的结果明显好于采用PCR方法建模;原始光谱经二阶微分获得的预测结果比一阶微分光谱和原始光谱的预测结果好;剔除异常样本后,在全波段范围内原始光谱经二次微分的预测相关系数达到0.975 37,校正均方根误差和预测均方根误差分别为2.33和5.49。本研究说明, 应用近红外漫反射光谱检测叶片叶绿素含量是可行的,可为今后快速无损检测叶片叶绿素含量提供理论依据。  相似文献   

6.
马尾松针叶光谱特征与其叶绿素含量间关系研究   总被引:7,自引:0,他引:7  
以马尾松针叶野外高光谱数据为基础,分析了马尾松光谱变化,构建或借助不同光谱特征参数,在理论和实践分析的基础上,建立了马尾松针叶叶绿素含最与光谱反射率及9个特征参数之间的关系.研究结果表明:(1)马尾松叶绿素含量在527,703,1 364及1 640 nm四个波长附近,与其反射率具有较好的线性关系,为马尾松遥感监测在波段选择上提供了依据;(2)红边位置、红边平均反射率、红边位置附近平均反射率、红边斜率、红边面积、红谷吸收深度、绿峰反射高度、红边归一化植被指数、红边植被胁迫指数等9个马尾松反射光谱特征参数均与叶绿素含量间存在指数函数关系,相关系数绝对值在0.5~0.7之间;(3)采用9个光谱特征参数建立了马尾松针叶叶绿素含量预测模型,且所建立的基于高斯核函数变换的偏最小二乘回归模型对叶绿素含量的预测精度远远大于传统线性回归模型,模型的均方误差为0.008 8,平均绝对百分误差为0.761 7%.  相似文献   

7.
为了快速感知并分析田间作物生长状况,采用先进的半导体镀膜工艺光谱成像传感器,研究了玉米植株冠层叶绿素含量分布式检测方法。试验采用IMEC 5×5成像传感器,拍摄47株苗期玉米植株冠层,获取673~951 nm范围内的25个波长的光谱图像。实验中,利用SPAD-520叶绿素仪非破坏性地测量叶绿素含量,每株玉米冠层叶片设置2~3个采样点,每点测量3次取平均,共计242个样本数据。对光谱图像数据,经4灰度级标准板提取并校准反射率。为了实现玉米植株与花盆、土壤背景的有效分离,在分析不同对象光谱反射率与图像像素特征的基础上,提出了一种基于谱图特征组合的植株分割方法,即基于植被指数的图像初步分割与区域标记计算的冠层精细分割的植株提取算法。首先,计算各像素点归一化植被指数(NDVI),并开展基于NDVI的植株冠层分割方法分割结果优于基于最大类间方差法的全局阈值自适应分割算法。其次,采用边缘保持中值滤波算法剔除初步分割后图像中存在的噪声点后,基于区域标记算法进行精细分割,获得掩膜并最终得到仅保留玉米植株冠层的光谱图像。分别采用相关分析法(CA)和随机蛙跳(RF)算法选取反射光谱特征波长,并构建750~951 nm近红外(NIR)和673~750 nm红色(R)选中波长集合,遍历NIR和R集合组合计算比值植被指数(RVI),差值植被指数(DVI),归一化植被指数(NDVI)和SPAD转换指数(T_(SPAD))。然后,再次采用CA和RF算法筛选植被指数,利用SPXY算法将样本按照7∶3比例划分为建模集和验证集,并建立了叶绿素含量指标检测CA+RF-PLSR模型。结果表明,其建模集R■为0.573 9, RMSEC为3.84%,验证集R■为0.420 2, RMSEC为2.3%。利用建模结果对多光谱图像进行处理,绘制玉米叶片SPAD值伪彩色分布图,实现叶绿素含量分布可视化。研究表明采用镀膜型光谱成像数据,分析对象光谱与图像特征,探讨玉米冠层叶绿素含量分布检测的可行性,可为直观监测作物生长动态提供支持。  相似文献   

8.
探讨了采用浸入式可见/近红外光谱技术对雨生红球藻叶绿素含量快速检测的可行性。通过选择最优的预处理方法,比较全波段偏最小二乘回归(PLS)建模和连续投影算法(SPA)提取特征波长后PLS建模的结果,选出最优模型。SPA-PLS模型对叶绿素a与叶绿素b含量预测效果均优于全波段PLS模型,叶绿素a,b的RPD值分别达到2.946 1和1.902 3。表明,光谱在预处理后结合建模算法能够实现叶绿素a,b含量较好的预测,叶绿素a的预测效果要好于叶绿素b。  相似文献   

9.
ANFIS在植被叶绿素含量高光谱反演中的应用   总被引:3,自引:0,他引:3  
利用ASD便携式野外光谱仪和SPAD-502叶绿素计实测了落叶阔叶树法国梧桐、毛白杨叶片的高光谱反射率与叶片绿度,建立了10个常见植被指数叶绿素含量估算模型,并采用相关系数较大波段作为BP人工神经网络模型(ANN-BP)的输入变量进行了叶绿素含量的估算,将自适应神经模糊推理系统(ANFIS)应用到植被叶绿素含量高光谱反演中。结果表明:10个常见植被指数中归一化植被指数可以较为精确反演叶绿素含量,法国梧桐、毛白杨归一化植被指数回归模型确定性系数R2分别为0.795 7和0.754 6,法国梧桐、毛白杨ANN-BP预测值与实测值之间的线性回归的确定性系数R2分别为0.935 2和0.917 1,ANFIS可以大大提高反演精度,法国梧桐、毛白杨预测值与实测值之间的线性回归的确定性系数R2分别为0.9998和0.995 6,是一种良好的植被叶绿素含量高光谱反演模式。  相似文献   

10.
有监督主成分回归法在近红外光谱定量分析中的应用研究   总被引:5,自引:0,他引:5  
介绍了运用有监督主成分回归法建立近红外光谱定量分析模型的原理和方法.利用该方法先进行近红外光谱定量分析建模的波长信息选择,达到降低光谱数据维数的目的,然后建立数学模型,并用其分析预测集样品.文中以66个小麦样品为实验材料,随机选择其中40个样品建立小麦样品中蛋白质含量的近红外光谱定量分析模型,首先优选出4个波长点:4 632,4 636,5 994,5 997 cm-1,利用这4个波长点处光谱信息建立主成分回归模型预测26个样品的蛋白质含量,其结果与凯氏定氮法分析结果的相关系数为0.991,平均相对误差为1.5%.该方法从大量光谱数据中筛选出最重要的部分波长信息,实现了"少而精"的波长点选择,对建立抗共线性信息干扰的光谱定量分析模型,同时对指导专用近红外分析仪器设计中波长点的选择等方面都有一定的意义.  相似文献   

11.
温室番茄冠层和叶片光谱特征分析及营养诊断   总被引:2,自引:0,他引:2  
Zhao RJ  Li MZ  Yang C  Yang W  Sun H 《光谱学与光谱分析》2010,30(11):3103-3106
通过温室基质栽培,利用ASD光谱仪和傅里叶光谱分析仪测量了四种营养水平下温室番茄冠层和叶片的光谱反射曲线,并检测了对应叶片的水分含量、叶绿素含量和氮含量,分析了不同营养水平下番茄冠层和叶片的反射光谱变化,并对番茄叶片含水量的敏感波长以及冠层反射光谱的红边波长进行了研究。结果表明:温室番茄冠层反射光谱曲线在可见光550nm左右均有叶绿素的强反射峰,近红外区反射率高于可见光区。在同一生长期,随基质营养水平的提高,番茄冠层反射率在可见光波段不断减小,在近红外波段不断增大,且红边波长位置出现"红移"现象。利用530和760nm特征波长得到的归一化颜色指标NDCI与叶片氮含量有较好相关性,R2为0.7511。  相似文献   

12.
刘燕德  邓清 《发光学报》2015,36(8):957-961
为实现脐橙叶片叶绿素含量无损检测及其分布可视化表征,采用高光谱成像技术,结合自适应重加权算法(CARS)和连续投影算法(SPA),筛选特征光谱变量,进行脐橙叶片叶绿素含量及可视化分布研究。选取叶绿素测量位置的7×7矩形感兴趣区域,提取并计算脐橙叶片平均光谱。基于Kennard-ston方法,将148个脐橙叶片样品划分成建模集和预测集(111∶37)。采用CARS和SPA算法分别筛选出了32个和6个叶绿素特征光谱变量,用于建立偏最小二乘(PLS)回归模型。采用37个未参与建模的脐橙叶片样品评价模型的预测能力,经比较,CARS-PLS和SPA-PLS模型均优于变量筛选前的PLS模型,且CARS-PLS和SPA-PLS模型的预测能力几乎相同,其预测集相关系数分别为0.90和0.91,均方根误差分别为1.53和1.60。SPA-PLS模型计算脐橙叶片每个像素点的叶绿素含量,经伪彩色变换,绘制了脐橙叶片叶绿素含量可视化分布图。实验结果表明:变量筛选方法结合高光谱成像技术,能够实现脐橙叶片叶绿素含量无损检测及叶绿素分布可视化表达,并简化了数学模型。  相似文献   

13.
对灰霉病胁迫下番茄叶片中叶绿素含量(SPAD)的高光谱图像信息进行了研究。首先获取380~1 030 nm波段范围内健康和染病番茄叶片的高光谱图像,然后基于ENVI软件处理平台提取高光谱图像中感兴趣区域的光谱信息,经平滑(Smoothing)、标准化(Normalize)等预处理后,建立了基于Normalize预处理的偏最小二乘回归(PLSR)和主成分回归(PCR)模型。再基于PLSR获得的4个变量建立反向传播神经网络(BPNN)和最小二乘-支持向量机(LS-SVM)模型。4个模型中,LS-SVM的预测效果最好,其决定系数R2为0.901 8,预测集均方根误差RMSEP为2.599 2。结果表明,基于健康和染病番茄叶片的高光谱图像响应特性检测叶绿素含量(SPAD)是可行的。  相似文献   

14.
基于高光谱的番茄叶片过氧化物酶活力测定   总被引:4,自引:0,他引:4  
用高光谱图像技术结合化学计量学方法,实现了番茄叶片中过氧化物酶(POD)活性的快速检测。利用高光谱图像的光谱特征建立预测模型步骤为:采集高光谱图像数据、获取光谱曲线、光谱数据预处理、提取特征波段、建立POD酶活性预测模型。与预处理方法(SG,SNV,MSC,1-Der和2-Der)相比,DOSC预处理对POD酶活性预测效果最好。研究表明:以443,464,413,410,401,402,426和926 nm这八个特征波段的光谱数据建立的DOSC-SPA-PLS模型对POD酶活性预测结果为Rp=0.935 3,RMSEP=37.80 U·g-1。这说明高光谱图像技术测定番茄叶片POD活性具有可行性,且预测结果令人满意,这为抗氧化酶活性和番茄植株生长状况的动态检测提供了新的方法。  相似文献   

15.
Abstract

Chlorophylls are the most important pigments for photosynthesis and are related to the phenology and health status of plants. Monitoring the chlorophyll content and density of Populus euphratica leaves via remote sensing technology has great significance for restoring and reconstructing damaged desert ecosystems. In this study, Populus euphratica leaves were collected in the public welfare forest reserve of Awati county, Xinjiang, China. Spectral variables and the chlorophyll content and density of leaves were obtained, simple linear regression and multiple linear regression models were built to predict leaf chlorophyll content and density. The results showed that partial least-squares regression models are the most appropriate for chlorophyll content estimation and its determination coefficient and root mean square error were 0.630?~?0.745 and 0.031?~?0.240, respectively. The standard deviation to root mean square error ratio was greater than 1.8 and the ratio of the standard error of the laboratory to the standard error of prediction was close to 1 for the partial least-squares regression models. These results confirmed that chlorophyll content can be accurately predicted and the proposed partial least-squares regression models were adequate for estimating Populus euphratica chlorophyll content rapidly and nondestructively, representing an alternative to conventional measurement methods. The rapid monitoring of chlorophyll content can reflect the health condition of Populus euphratica in a timely manner and provide technical support for ecological reconstruction in arid areas.  相似文献   

16.
火龙果是近年来引进我国的营养价值高、经济效益好的新型水果,肉质茎枝是其主要光合器官,与常见果树具有较大差异。为探索以茎枝为光合作用器官的植被的光谱特征及其生化组分的估测方法,以火龙果为研究对象,在贵州省典型种植区罗甸县开展了4个氮肥梯度田间试验,同步测定不同养分丰缺程度下的火龙果茎枝高光谱和相应叶绿素含量数据;然后分析火龙果茎枝光谱数据的演化规律,并采用数学变换、连续小波变换算法并结合相关性分析算法处理分析火龙果茎枝光谱数据,提取并筛选特征波段;最后利用偏最小二乘算法构建火龙果茎枝叶绿素含量估测模型。研究结果表明:(1)火龙果肉质茎枝的原始光谱曲线整体趋势与常见绿叶植物相似,但随施氮量的增加,火龙果近红外处的光谱反射率逐渐降低,变化趋势与常见绿叶植物相反,茎枝光谱的吸收峰(谷)随施氮量的增加呈升高(加深)的趋势。(2)数学变换中的一阶微分与在L1-L5尺度内的连续小波变换能有效提升光谱对叶绿素含量的敏感性,火龙果茎枝原始光谱与叶绿素含量的敏感区域主要位于730~1 400 nm,数学变换与连续小波变换均能提升光谱对叶绿素含量的敏感性。与常见绿叶植物相比,火龙果茎枝敏感波段分布相对分散,且多位于730 nm附近与近红外区域(1 100~1 600 nm)。(3)数学变换和连续小波变换能明显提升光谱对火龙果茎枝叶绿素含量的估测能力,其中基于一阶微分的估测模型与基于连续小波变换L1与L4的估测模型分别为数学变换与连续小波变换的最优模型,其验证精度分别为R2验证=0.625,RMSE=0.048,RPD=1.238(一阶微分);R2验证=0.678,RMSE=0.037,RPD=1.652(连续小波变换);表明高光谱技术可以作为火龙果茎枝叶绿素含量和营养诊断的无损监测手段。该研究为完善不同植被类型基于高光谱指数的叶绿素反演提供了补充。  相似文献   

17.
基于竞争性自适应重加权算法(CARS)和相关系数法(CA)特征波长选择方法,提出了利用可见-近红外高光谱成像技术检测番茄叶片灰霉病的方法。首先获取380~1 023 nm波段范围内80个染病和80个健康番茄叶片的高光谱图像,然后提取染病和健康叶片感兴趣区域(ROI)的光谱反射率值,作为番茄叶片灰霉病鉴别模型的输入来建立支持向量机(SVM)鉴别模型,训练集和验证集的鉴别率都是100%。研究进一步通过CARS和CA提取特征波长,分别得到5个(554, 694, 696, 738和880 nm)和4个(527, 555, 571和633 nm)特征波长,然后分别建立CARS-SVM和CA-SVM鉴别模型。结果显示,CARS-SVM模型中训练集和验证集的鉴别率都是100%,CA-SVM模型中训练集和验证集的鉴别率分别是91.59%和92.45%。以上结果说明了从可见-近红外高光谱图像中提取的光谱反射率值用于检测番茄叶片的灰霉病是可行的。  相似文献   

18.
叶绿素是作物生长诊断的重要参数,对其进行高效检测是农田精细化管理的基础.PROSPECT模型是作物光谱学检测研究的重要工具,可为建立高精度叶绿素诊断模型提供数据集基础.为了建立具有普适性的田间玉米作物叶绿素含量检测模型,使用PROSPECT模型输入叶片结构参数和生化参数模拟叶片400~2500 nm波段反射率曲线106...  相似文献   

19.
水培番茄施氮量近红外光谱预测模型的研究   总被引:5,自引:0,他引:5  
通过小波变换去除了可见光区(350~560 nm)的噪声,提取出了叶酸的特征波段366 nm和与叶绿素有关的特征波段380,414,437,554 nm.在560~2 500 nm的波长范围内,去除噪声后的最大误差低于1.47%;在特征峰谷处的最大误差不超过0.11%.用BP神经网络建立了番茄施氮量预测模型.研究表明,在用植物探头获取番茄叶片光谱数据并去噪的条件下,用554,673,1 440,1 940 nm处的吸光度值作为BP神经网络的输入变量建立的番茄施氮最的预测模型有很高的预测精度,有极大的潜力能够满足实际应用的需要.对研究大田有效养分的预测模型也有重要的参考价值.  相似文献   

20.
为了探索一种简捷、快速、高效的西红柿品质检测方法,应用近红外光谱技术与光纤传感技术相结合的新方法,快速测量西红柿果浆样品中营养成分的含量。实验所用的主要仪器为近红外光纤光谱仪,波长范围为900~2 500 nm。以164个西红柿样品为标准样品,进行了光谱采集及相应的化学值测定。实验数据采用偏最小二乘法(PLS)进行回归,建立西红柿果浆中总酸及可溶性糖含量的数学模型,并对回归方法进行统计分析。结果为:西红柿果浆中总酸验证集的决定系数(R2)为0.967,均方根误差(RMSEC)为0.133,预测均方根误差(RMSEP)为0.103;总糖验证集的决定系数(R2)为0.976,均方根误差(RMSEC)为0.463,预测均方根误差(RMSEP)为0.460。均达到了较好的预测结果,表明该方法对定量分析西红柿果浆中多组分含量是可行的。基于该方法快速、简便及可对同一样品多组分含量同时分析的优点,它是一种极具发展前途的传感器,正在逐渐成为国际传感器领域的研究热点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号