首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The new macrocyclic ligand 1,9(4,7)-diphenanthroline-3,7,11,15-tetraazacyclohexadecaphane (L) was synthesized by a 2?:?2 reaction of 1,10-phenanthroline-4,7-dialdehyde with 1,3-diaminopropane, followed by reduction with NaBH(4). L contains two phenanthroline groups linked together by two 1,3-diaminopropane chains in such a way that the heteroaromatic nitrogen atoms point outside the ligand cavity. The ligand structure defines two pairs of identical compartments displaying a specific ability in the binding of protons (1,3-diaminopropane) and metal ions (phenanthroline). Protonation and Zn(II) coordination were studied by means of potentiometric and spectroscopic ((1)H NMR, UV-vis, fluorescence) techniques. Both protonation and Zn(II) coordination consistently affect the fluorescence emission properties of L, giving rise to enhancement or quenching of the emission, depending on the species involved. L becomes emissive upon protonation, but the formation of the highly protonated species, in particular the fully protonated [H(6)L](6+), quenches the emission. The mono- and dinuclear Zn(II) complexes of the unprotonated ligand are non-emissive, like free L, while Zn(II) binding to [HL](+) activates the emission. The most interesting aspect, however, is the chelation enhancement of quenching (CHEQ) observed upon Zn(II) binding to [H(2)L](2+) and [H(4)L](4+), being among the few examples of CHEQ effect observed for Zn(II) complexes. Hydrogen bonding between a metal coordinated water molecule and a phenanthroline group seems to be responsible for the CHEQ observed for [ZnH(2)L](4+).  相似文献   

2.
The synthesis of the macrocyclic ligand 4,4'-(2,5,8,11,14-pentaaza[15])-2,2'-bipyridylophane (L3), which contains a pentaamine chain linking the 4,4'-positions of a 2,2'-dipyridine moiety, is reported. Protonation and Zn(II) complexation by L3 and by macrocycle L2, containing the same pentaamine chain connecting the 6,6'-positions of 2,2'-dipyridine, were studied by means of potentiometric, UV-vis, and fluorescent emission measurements. While in L2 all the nitrogen donor atoms are convergent inside the macrocyclic cavity, in L3 the heteroaromatic nitrogen atoms are located outside. Both ligands form mono- and dinuclear Zn(II) complexes in aqueous solution. In the mononuclear Zn(II) complexes with L2, the metal is coordinated inside the macrocyclic cavity, bound to the heteroaromatic nitrogen donors and three amine groups of the aliphatic chain. As shown by the crystal structure of the [ZnL2](2+) complex, the two benzylic nitrogens are not coordinated and facile protonation of the complex takes place at slightly acidic pH values. Considering the mononuclear [ZnL3](2+) complex, the metal is encapsulated inside the cavity, not coordinated by the dipyridine unit. Protonation of the complex occurs on the aliphatic polyamine chain and gives rise to translocation of the metal outside the cavity, bound to the heteroaromatic nitrogens.  相似文献   

3.
The synthesis, protonation behavior, and Cu2+ and Zn2+ coordination chemistry of the novel bibrachial aza lariat ether (naphthalen-1-ylmethyl)[2-(20-[2-[(naphthalen-1-ylmethyl)amino]ethyl]-3,6,9,17,20,23,29,30-octaazatricyclo[23.3.1.1*11,15*]triaconta-1(29),11(30),12,14,25,27-hexaen-6-yl)ethyl]amine (L) are discussed. The macrocycle, which has two aminoethyl naphthyl moieties symmetrically appended to a 2:2 azapyridinophane structure, displays, in the pH range 2-11, six protonation steps that correspond to the protonation of the secondary amino groups. Steady-state fluorescence measurements show emissions due to the monomer and to the excimer formed between the two naphthalene fragments of the macrocycle. The time-resolved fluorescence data, obtained by the time-correlated single photon counting technique, show that a significant percentage of excimer is preformed as ground-state dimers. The ligand L forms with the metal ions Cu2+ and Zn2+ mono- and dinuclear complexes in aqueous solution. The influence of metal coordination in the fluorescence emission of L is analyzed. The acid-base, coordination capabilities, and emissive behavior of L are compared with those presented by its synthetic precursor L1, which has a tripodal tris(2-aminoethyl)amine structure functionalized at one of its terminal amino groups with a naphthyl moiety.  相似文献   

4.
The synthesis and characterization of the new ligand 2,9-bis[N,N-bis(2-aminoethyl)aminomethyl]-1,10-phenanthroline (L) are reported. L contains two diethylenetriamine units connected on the central nitrogen atom by a 1,10-phenanthroline group forming a symmetrical branched ligand. The basicity and binding properties of L toward Cu(II) and Zn(II) in aqueous solution were determined by means of potentiometric, UV-vis, fluorescence, and 1H and 13C NMR techniques. L behaves as pentaprotic base under the experimental conditions used; from HL+ to H4L4+ species it is the secondary amine functions that are protonated while in the H5L5+ species also the phenanthroline is involved in protonation. L does not show fluorescence properties in the range of pH (0-14) investigated. It forms both mono- and dinuclear stable species where the phenanthroline is directly involved with both nitrogens in the coordination of the first metal which is coordinated in a pentacoordination environment also by one dien unit. The other dien unit undergoes easy protonation in the mononuclear complex while it binds the second metal in the dinuclear species. For this reason, L, in providing two different binding areas for metal coordination, behaves as an unsymmetrical compartmental ligand; one area is formed by one dien unit and by the phenanthroline, and the other by the remaining dien unit. This produces unsymmetrical metal complexes both for the mono- and dinuclear species; however, the role of the binding areas is fast exchanging in aqueous solution, at least on the NMR time scale. Solution studies and the three crystal structures of the [Zn(H2L)]4+, [[Cu(H2L)](ClO4)]3+, and [[Cu2LCl2](ClO4)]+ species highlight the unsymmetrical compartmental behavior of L as well as the host properties of the complexes in adding exogenous ligands such as hydroxide, pherchlorate, and chloride anions.  相似文献   

5.
The synthesis of the new terpyridine-containing macrocycle 2,5,8,11,14-pentaaza[15](6,6' ')cyclo(2,2':6',2' ')terpyridinophane (L) is reported. The ligand contains a pentaamine chain linking the 6,6' ' positions of a terpyridine unit. A potentiometric, (1)H NMR, UV-vis spectrophotometric and fluorescence emission study on the acid-base properties of L in aqueous solutions shows that the first four protonation steps occur on the polyamine chain, whereas the terpyridine nitrogens are involved in proton binding only at strongly acidic pH values. L can form both mono- and dinuclear Cu(II), Zn(II), Cd(II), and Pb(II) complexes in aqueous solution. The crystal structures of the Zn(II) and Cd(II) complexes ([ZnLH](2)(micro-OH))(ClO(4))(5) (6) and ([CdLH](2)(micro-Br))(ClO(4))(5).4H(2)O (7) show that two mononuclear [MLH](3+) units are coupled by a bridging anion (OH(-) in 6 and Br(-) in 7) and pi-stacking interactions between the terpyridine moieties. A potentiometric and spectrophotometric study shows that in the case of Cu(II) and Zn(II) the dimeric assemblies are also formed in aqueous solution containing the ligand and the metals in a 1:1 molar ratio. Protonation of the complexes or the addition of a second metal ion leads to the disruption of the dimers due to the increased electrostatic repulsions between the two monomeric units.  相似文献   

6.
The macrocyclic phenanthrolinophane 2,9-[2,5,8-triaza-5-(N-anthracene-9-methylamino)ethyl]-[9]-1,10-phenanthrolinophane (L) bearing a pendant arm containing a coordinating amine and an anthracene group forms stable complexes with Zn(II), Cd(II) and Hg(II) in solution. Stability constants of these complexes were determined in 0.10 mol dm(-3) NMe(4)Cl H(2)O-MeCN (1:1, v/v) solution at 298.1 +/- 0.1 K by means of potentiometric (pH metric) titration. The fluorescence emission properties of these complexes were studied in this solvent. For the Zn(II) complex, steady-state and time-resolved fluorescence studies were performed in ethanol solution and in the solid state. In solution, intramolecular pi-stacking interaction between phenanthroline and anthracene in the ground state and exciplex emission in the excited state were observed. From the temperature dependence of the photostationary ratio (I(Exc)/I(M)), the activation energy for the exciplex formation (E(a)) and the binding energy of the exciplex (-DeltaH) were determined. The crystal structure of the [ZnLBr](ClO(4)).H(2)O compound was resolved, showing that in the solid state both intra- and inter-molecular pi-stacking interactions are present. Such interactions were also evidenced by UV-vis absorption and emission spectra in the solid state. The absorption spectrum of a thin film of the solid complex is red-shifted compared with the solution spectra, whereas its emission spectrum reveals the unique featureless exciplex band, blue shifted compared with the solution. In conjunction with X-ray data the solid-state data was interpreted as being due to a new exciplex where no pi-stacking (full overlap of the pi-electron cloud of the two chromophores - anthracene and phenanthroline) is observed. L is a fluorescent chemosensor able to signal Zn(II) in presence of Cd(II) and Hg(II), since the last two metal ions do not give rise either to the formation of pi-stacking complexes or to exciplex emission in solution.  相似文献   

7.
Two new mixed aza-thia crowns 5-aza-2,8-dithia[9]-(2,9)-1,10-phenanthrolinophane (L(4)) and 2,8-diaza-5-thia[9]-(2,9)-1,10-phenanthrolinophane (L(7)) have been synthesized and characterized. The coordination behavior of L(4) and L(7) toward the metal ions Cu(II), Zn(II), Pb(II), Cd(II), Hg(II), and Ag(I) was studied in aqueous solution by potentiometric methods, in CD3CN/D2O 4:1 (v/v) by (1)H NMR titrations and in the solid state. The data obtained were compared with those available for the coordination behavior toward the same metal ions of structurally analogous mixed donor macrocyclic ligands L(1)-L(3), L(5), L(6): all these contain a phenanthroline subunit but have only S/O/N(aromatic) donor groups in the remaining portion of the ring and are, therefore, less water-soluble than L(4) and L(7). The complexes [Cd(NO3)2(L(5))], [Pb(L(7))](ClO4)2 x 1/2MeCN, [Pb(L(4))](ClO4)2 x MeCN, and [Cu(L(7))](ClO4)2 x 3/2MeNO2 were characterized by X-ray crystallography. The efficacy of L(1)-L(7) in competitive liquid-liquid metal ion extraction of Cu(II), Zn(II), Cd(II), Pb(II), Ag(I), and Hg(II) was assessed. In the absence of Hg(II), a clear extraction selectivity for Ag(I) was observed in all systems investigated.  相似文献   

8.
The synthesis of the new terpyridine-containing macrocycle 2,6,10,14-tetraaza[15](6,6')cyclo(2,2':6',2')terpyridinophane (L) is reported. The ligand contains a tetraamine chain linking the 6,6' positions of a terpyridine unit. A potentiometric, (1)H NMR, UV-vis spectrophotometric and fluorescence emission study on the basicity properties of in aqueous solutions shows that the first four protonation steps occur on the polyamine chain, while the terpyridine nitrogens are involved in proton binding only in the last protonation step at strongly acidic pH values. Cu(II), Zn(II), Cd(II) and Pb(II) complexation was studied in aqueous solution by means of potentiometric, spectrophotometric and spectrofluorimetric measurements. Cu(II) and Zn(II) can form both mono- and dinuclear complexes in solution, while the larger Cd(II) and Pb(II) give only mononuclear complexes. In the [ML](2+) complexes (M = Zn(II) or Cd(II)) the metal is unequivocally bound to the terpyridine unit. Some amine groups are not coordinated and can quench the fluorescence emission of the terpyridine unit thanks to an electron transfer process. Protonation of the unbound amine groups inhibits the eT process, affording fluorescent [MLH(x)]((2+x)+) complexes.  相似文献   

9.
The segmental ligand 2-[6-(N,N-diethylcarbamoyl)pyridin-2-yl]-1,1'-dimethyl-5,5'-methylene-2'-(6-methylpyridine-2-yl)bis[1H-benzimidazole] (L3) reacts with a stoichiometric mixture of LnIII (Ln = La, Eu, Gd) and M(II) (M = Zn, Fe) in acetonitrile to produce selectively the heterodimetallic triple-stranded helicates (HHH)-[LnM(L3)3]5+. In these complexes, M(II) is pseudooctahedrally coordinated by the three wrapped bidentate binding units, thus forming a noncovalent tripod which organizes the three unsymmetrical tridentate segments to give ninefold coordination to LnIII. The introduction of a methyl group at the 6 position of the terminal pyridine in L3 sterically reduces the complexing ability of the bidentate segment for M(II). Spectroscopic (ESI-MS, UV/Vis/NIR, NMR), magnetic and electrochemical measurements show that 1) the head-to-head-to-head triple helical complexes (HHH)-[LnM(L3)3]5+ are quantitatively formed in solution only for ligand concentrations larger than 0.01 M, 2) FeII adopts a pure high-spin electronic configuration in (HHH)-[LnFe(L3)3]5+ and 3) the FeII/FeIII oxidation process is prevented by steric constraints. Detailed photophysical studies of (HHH)-[Eu-Zn(L3)3]5+ confirm that the pseudotricapped trigonal-prismatic lanthanide coordination site is not affected by the methyl groups bound to the terminal pyridine, thus leading to significant Eu-centered emission upon UV irradiation. In (HHH)-[EuFe(L3)3]5+, a resonant intramolecular Eu-->Fe(II)hs energy transfer partially quenches the Eu-centered luminescence; however, the residual red emission demonstrates that high-spin iron(II) is compatible with the sensitization of Eu(III) in heterodimetallic d-f complexes. The influence of the electronic configuration of Fe(II) on the efficiency of Eu(III)-->Fe(II) energy-transfer processes is discussed together with its consequence for the design of optically active spin-crossover supramolecular devices.  相似文献   

10.

Reaction of the ligand 3-(pyridin-2-yl)pyrazole (L) with Cu(ClO4)2 and CuX2 (X=Cl, Br, I) gives complexes with stoichiometry [Cu(L)2X]ClO4 (X = Cl, Br, I). The new complexes were characterized by elemental analyses and infrared and electronic spectroscopy. The crystal structure of the [Cu(L)2Br]ClO4 was determined by X-ray crystallography. The cation complex (i.e. [Cu(L)2Br]P) contains copper(II) with a distorted trigonal bipyramid geometry with a Br ligand occupying an equatorial site. The penta-coordinated metal atom is bonded to two pyridinic nitrogens, two pyrazolic nitrogens, and one bromide anion. The pyrazolic H atoms are hydrogen bonded to Br atoms, resulting in infinite hydrogen-bonded chains running in the b direction. There are π‐π stacking interactions (charge-transfer arrays) between the parallel aromatic rings belonging to adjacent chains that may help to form hydrogen bonding in the coordination geometry around Cu (II).  相似文献   

11.
The synthesis, protonation and Cu(II) coordination features of the novel azacyclophane type receptors 2,6,10,13,17,21-hexaza[22]-(2,6)-pyridinophane (L2), 2,6,9,12,15,19-hexaza[20]-(2,6)-pyridinophane (L5) and 2,6,9,12,15,19-hexaza[20]metacyclophane (L6) are presented. The protonation and Cu(II) constants are analysed and compared with the previously reported open-chain polyamines 4,8,11,15-tetrazaoctadecane-1,18-diamine (L1) and 4,7,10,13-tetraazahexadecane-1,16-diamine (L4) and of the cyclophane 2,6,10,13,17,21-hexaaza[22]paracyclophane (L3). All the systems form mono- and dinuclear complexes whose stability and pH range of existence depend on the type of hydrocarbon chains and molecular topology. The effects of the cyclic or open-chain nature and of the presence of the pyridine rings on the protonation and formation of mono- and dinuclear complexes are discussed. Stopped-flow kinetic measurements on the acid-promoted decomposition of the Cu(II) complexes have been carried out for the different systems. With respect to the decomposition of the dinuclear complexes, because the size of the macrocycles forces both metal ions to be close to each other, the release of the first ion occurs within the mixing time of the stopped-flow except for the dinuclear complexes of L2. However, the most interesting kinetic result is the observation of different kinetics of decomposition for the different mononuclear complexes formed by a given ligand. This effect is especially evident for L3 and L6 and indicates a change in the coordination mode of the ligand for the different mononuclear species. Therefore the Cu(II) ion performs a slippage motion through the macrocyclic cavity driven by pH changes. The stopped-flow experiments are an excellent tool to detect these slippage processes that may be present for the complexes with other macrocycles.  相似文献   

12.
The anthracene lumiphore was linked to the chelating ligand 2,2'-bipyridine, forming 4-[N-(2-anthryl)carbamoyl]-4'-methyl-2,2'-bipyridine (bpyAnth). Coupling through an amide linkage provides some electronic isolation of the anthracene lumiphore. Electrochemistry suggested little change of the anthracene oxidation whether free (1.35 V) linked to 2,2'-bipyridine as bpyAnth (1.30 V) or appended to Fe(II) (1.29 V). The bpyAnth ligand retained the structured luminescence characteristic of anthracene at 375, 400, 419, and 441 nm. This anthracene emission persists even when bpyAnth is complexed to an Fe(II) center. The complex [Fe(bpyAnth)3]2+ is emissive, in marked contrast to typical polyazine iron(II) complexes. This bpyAnth ligand serves as a luminescently tagged analogue of 2,2'-bipyridine, useful for coordination to a variety of metals.  相似文献   

13.
The synthesis and characterisation of the new macrocyclic ligand 6-methyl-2,6,10-triaza-[11]-12,25-phenathrolinophane (L1), which contains a triamine aliphatic chain linking the 2,9 positions of 1,10-phenanthroline and of its derivative L2, composed by two L1 moieties connected by an ethylenic bridge, are reported. Their basicity and coordination properties toward Cu(II), Zn(II), Cd(II), Pb(II) and Hg(II) have been studied by means of potentiometric and spectroscopic (UV-Vis, fluorescence emission) measurements in aqueous solutions. L1 forms 1:1 metal complexes in aqueous solutions, while L2 can give both mono- and dinuclear complexes. In the mononuclear L2 complexes the metal is sandwiched between the two cyclic moieties. The metal complexes with L1 and L2 do not display fluorescence emission, due to the presence of amine groups not involved in metal coordination. These amine groups can quench the excited fluorophore through an electron transfer process. The ability of the Zn(II) complexes with L1 and L2 to cleave the phosphate ester bond in the presence has been investigated by using bis(p-nitrophenyl)phosphate (BNPP) as substrate. The dinuclear complex with L2 shows a remarkable hydrolytic activity, due to the simultaneous presence within this complex of two metals and two hydrophobic units. In fact, the two Zn(II) act cooperatively in substrate binding, probably through a bridging interaction of the phosphate ester; the interaction is further reinforced by pi-stacking pairing and hydrophobic interactions between the phenanthroline unit(s) and the p-nitrophenyl groups of BNPP.  相似文献   

14.
The reaction of Pb(ClO4)2 x xH2O, an ancillary ligand L, and two equivalents of Au(CN)2(-) gave a series of crystalline coordination polymers, which were structurally characterized. The ligands were chosen to represent a range of increasing basicity, to influence the stereochemical activity (i.e., p-orbital character) of the Pb(II) lone pair. The Pb(II) center in [Pb(1,10-phenanthroline)2][Au(CN)2]2 (1) is 8-coordinate, with a stereochemically inactive lone pair; all 8 Pb-N bonds are similar. The Au(CN)2(-) units propagate a 2-D brick-wall structure. In [Pb(2,2'-bipyridine)2][Au(CN)2]2 (2), the 8-coordinate Pb(II) center has asymmetric Pb-N bond lengths, indicating moderate lone pair stereochemical activity; the supramolecular structure forms a 1-D chain/ribbon motif. For [Pb(ethylenediamine)][Au(CN)2]2 (3), the Pb(II) is only 5-coordinate and extremely asymmetric, with Pb-N bond lengths from 2.123(7) to 3.035(9) A; a rare Pb-Au contact of 3.5494(5) A is also observed. The Au(CN)2(-) units connect the Pb(ethylenediamine) centers to form 1-D zigzag chains which stack via Au-Au interactions of 3.3221(5) A to yield a 2-D sheet. (207)Pb MAS NMR of the polymers indicates an increase in both the chemical shielding span and isotropic chemical shift with increasing Pb(II) coordination sphere anisotropy (from delta iso = -2970 and Omega = 740 for 1 to delta iso = -448 and Omega = 3980 for 3). The shielding anisotropy is positively correlated with Pb(II) p-character, and reflects a direct connection between the NMR parameters and lone-pair activity. Solid-state variable-temperature luminescence measurements indicate that the emission bands at 520 and 494 nm, for 1 and 2, respectively, can be attributed to Pb --> L transitions, by comparison with simple [Pb(L)2](ClO4)2 salts. In contrast, two emission bands for 3 at 408 and 440 nm are assignable to Au-Au and Pb-Au-based transitions, respectively, as supported by single-point density-functional theory calculations on models of 3.  相似文献   

15.
The synthesis of a new ligand (L1) containing two 1,4,7‐triazacyclononane ([9]aneN3) moieties linked by a 4,5‐dimethylenacridine unit is reported. The binding and fluorescence sensing properties toward Cu2+, Zn2+, Cd2+, and Pb2+ of L1 and receptor L2, composed of two [9]aneN3 macrocycles bridged by a 6,6′′‐dimethylen‐2,2′:6′,2′′‐terpyridine unit, have been studied by coupling potentiometric, UV/Vis absorption, and emission measurements in aqueous media. Both receptors can selectively detect Zn2+ thanks to fluorescence emission enhancement upon metal binding. The analysis of the binding and sensing properties of the Zn2+ complexes toward inorganic anions revealed that the dinuclear Zn2+ complex of L1 selectively binds and senses the triphosphate anion (TP), whereas the mononuclear Zn2+ complex of L2 displays selective recognition of diphosphate (DP). Binding of TP or DP induces emission quenching of the Zn2+ complexes with L1 and L2, respectively. These results are exploited to discuss the role played by pH, number of coordinated metal cations, and binding ability of the bridging units in metal and/or anion coordination and sensing.  相似文献   

16.
Visible-light-induced photoreactions of [(bpy)2Ru(II)L]Cl2 (bpy = bipyridine, L = trans-1,2-bis(4-(4'-methyl)-2,2'-bipyridyl) ethene) in aqueous solution are examined. From pH titrations, it is found that the Ru complex is a stronger base (pKa* = 6) in the excited state than in the ground state (pKa = 4). Photolysis of the [(bpy)2Ru(II)L] complex in solutions at pH 7 and 12 led to formation of species with increased emission quantum yields, approximately 55 nm blue-shift of the emission maximum to 625 nm, and disappearance of the absorption band at 330 nm, the latter arising from the olefinic bond of the L ligand. No spectral changes are observed in solutions at pH < or = 4. With the help of chromatography, mass spectroscopy, Raman spectroscopy, and NMR, photoproducts formed at neutral pH have been analyzed. It is found that the major product is a dimer of [(bpy)2Ru(II)L], dimerizing around the double bond. Photoreactions do not occur in the dark or in the aprotic solvent acetonitrile. We propose that a Ru(III) radical intermediate is formed by photoinduced excited-state electron and proton transfer, which initiates the dimerization. The radical intermediate can also undergo photochemical degradative reductions. Below pH 4, the emission quenching is proposed to arise via protonation of the monoprotonated [(bpy)2Ru(II)LH] followed by electron transfer to the viologen-type moiety created by protonation. The products of photodegradation at pH > 12 are different from those of pH 7, but the mechanism of the degradation at pH > 12 was not elucidated.  相似文献   

17.
The pKa values associated with protonation of the one-electron reduced forms of series of [L'2Ru(II)L]2+ complexes [L' = bidentate polypyridyl ligand; L = bidentate polypyridyl ligand with additional uncoordinated N atoms in the aromatic ring system: e.g., dpp = 2,3-bis(2-pyridyl)pyrazine, bpz = 2,2'-bipyrazine] were assessed using pulse radiolysis techniques by the measurement of spectral variations as a function of pH. A linear correlation was observed between pKa and E (RuL'2L2+/+) for complexes in which the protonatable ligand was at the same time the site of reduction. In complexes where one or more of the nonprotonatable ligands (L') had very low pi* energy levels [e.g. (CF3)4bpy], reduction occurs on a nonprotonatable ligand and a dramatic decrease in the pKa values was observed for the reduced species. In complexes where the energies of the protonatable and nonprotonatable ligands were comparable, the protonation behavior was consistent with some orbital mixing/ delocalization of the electronic charge.  相似文献   

18.
《Polyhedron》1999,18(5):721-727
Reaction of 3-(2-pyrazinyl)pyrazole with KBH4 in a 21:1 ratio afforded the new ligand bis3, 2, 1dihydroborate [L]a bis(pyrazolyl)borate in which each pyrazolyl ring is functionalised with a pyrazin-2-yl group at the C3 position[L] is therefore a potentially chelating tetradentate ligand with two externally-directed N atoms (the pyrazinyl N4 atoms) which are available for additional metal–ion bindingleading to eg coordination polymers The crystal structure of [TlL] shows it to be a simple mononuclear complex with the Tl(I) ion coordinated in the N4 binding pocket of the ligandand the externally-directed N atoms involved only in intermolecular N H–C hydrogen-bonding interactions The two Tl–N bonds to the pyrazolyl N2 atoms (average length 270 Å) are much shorter than the bonds to the pyrazinyl N1 atoms (average length 305 Å) also there is an obvious gap in the apical position of the metal–ion coordination sphere characteristic of a stereochemically active lone pair The crystal structure of [PbL2] Et2O shows that the Pb(II) centre is nine-coordinate with two tetradentate chelating ligands and the ninth donor being a pyrazinyl N4 atom from an adjacent complex unit The molecules therefore form infinite one-dimensional chains in the crystal via bridging pyrazinyl groups The coordination geometry about the Pb(II) ions is approximately capped square antiprismatic with no obvious gap in the coordination sphere suggesting that the lone pair is stereochemically inactive.  相似文献   

19.
Schiff base namely 2-aminomethylthiophenyl-4-bromosalicylaldehyde (ATS)(4-bromo-2-(thiophen-2-yl-imino)methylphenol) and its metal complexes have been synthesized and characterized by elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, ESR and thermal analysis (TGA). The analytical data of the complexes show the formation of 1:2 [M:L] ratio of the formula [ML2], where M represents Ni(II), Zn(II) and Cu(II) ions, while L represents the deprotonated Schiff base. IR spectra show that ATS is coordinated to the metal ions in a bidentate manner through azomethine-N and phenolic-oxygen groups. The ligand and their metal chelates have been screened for their antimicrobial activities using the disc diffusion method against the selected bacteria. A cytotoxicity of the compounds against colon (HCT116) and larynx (HEP2) cancer cells have been studied. Protonation constants of (ATS) ligand and stability constants of its Cu2+, Co2+, Mn2+, Zn2+ and Ni2+ complexes were determined by potentiometric titration method in 50% (v/v) DMSO-water solution at ionic strength of 0.1 M NaNO3.  相似文献   

20.
The emission from two photoactive 14-membered macrocyclic ligands, 6-((naphthalen-1-ylmethyl)-amino)-trans-6,13-dimethyl-13-amino-1,4,8,11-tetraaza-cyclotetradecane (L1) and 6-((anthracen-9-ylmethyl)-amino)-trans-6,13-dimethyl-13-amino-1,4,8,11-tetraaza-cyclotetradecane (L2) is strongly quenched by a photoinduced electron transfer (PET) mechanism involving amine lone pairs as electron donors. Time-correlated single photon counting (TCSPC), multiplex transient grating (TG), and fluorescence upconversion (FU) measurements were performed to characterize this quenching mechanism. Upon complexation with the redox inactive metal ion, Zn(II), the emission of the ligands is dramatically altered, with a significant increase in the fluorescence quantum yields due to coordination-induced deactivation of the macrocyclic amine lone pair electron donors. For [ZnL2]2+, the substituted exocyclic amine nitrogen, which is not coordinated to the metal ion, does not quench the fluorescence due to an inductive effect of the proximal divalent metal ion that raises the ionization potential. However, for [ZnL1]2+, the naphthalene chromophore is a sufficiently strong excited-state oxidant for PET quenching to occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号