首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atomic layer deposition (ALD) of TiO(2) on SiO(2) powder using sequential addition of TiCl(4) and H(2)O vapors has been investigated by infrared spectroscopy. In the first cycle, TiCl(4) reacts monofunctionally or bifunctionally with surface silanols forming (Si-O-)(n)Ti-Cl(4)(-)(n) (n = 1, 2) species. Subsequent addition of water vapor leads to the hydrolysis of the (Si-O-)(n)Ti-Cl(4)(-)(n) to form a Ti-O-Ti network, and at the same time, some cleavage of Si-O-Ti bonds occurs, regenerating Si-OH in the process. It is shown that the species formed on the surface in the first TiCl(4) dose are temperature dependent. However, after addition of H(2)O vapor, the amount of TiO(2) deposited in the first complete cycle is independent of reaction temperature. In the second and above cycles, the amount of TiO(2) deposited as a function of ALD cycles strongly correlates with the amount of water on the surface. This, in turn, led to a temperature dependence of the growth rate of the TiO(2) per cycle.  相似文献   

2.
"A new method of TiN/Si3N4 nanocomposite synthesis was described and tested. TiCl4 and SiCl4 used as the starting materials and sodium as the reduction agent were conducted in liquid ammonia respectively. TiCl4 and SiCl4 were reduced simultaneously and titanium nitride/silicon nitride nanocomposite powderswere obtained by in situ co-deposition at temperatures around ~ 45 oC. X-ray diffraction patterns indicate that the product was amorphous and the by-product was sodium chloride. The product powders were heated up to 1600 oC and crystallization to TiN and fi-Si3N4 happened. Due to presence of TiN, the crystallization of silicon nitride in the mixture was later than that of pure silicon nitride. Transmission electron microscopy images show the average size of powders range from 10 nm to 40 nm and scanning electron microscopy images conformed that Ti and Si elements were dispersed uniformly. A green bulk nitride composite containing 20%TiN with the mean grain size of 100-300 nm and fracture toughness of 10.1§1.1 m1=2MPa , was obtained by spark plasma sintering at 1500-1600 oC. The effect of TiN additiven microstructure and mechanical properties of composite bulk was discussed."  相似文献   

3.
By combining atomic layer deposition (ALD) and molecular layer deposition (MLD) thin-film techniques, the latter being a variant of the former in which organic precursors are used, it is possible to deposit thin films containing precisely controlled portions of inorganic and organic constituents. This in turn enables the adjustment of material properties by changing the number of ALD and MLD cycles applied during the deposition. In this work, the properties of such thin-film "alloys" prepared by varying the portions of Ti-4,4'-oxydianiline (Ti-ODA) inorganic-organic hybrid and TiO(2) in the structure were investigated. The films were deposited at 280 °C using TiCl(4) and water as precursors for TiO(2), and TiCl(4) and ODA for the Ti-ODA hybrid. The results demonstrate excellent tunability of the film properties such as degree of crystallinity, roughness, refractive index, and hardness depending on the relative number of TiO(2) and Ti-ODA cycles employed.  相似文献   

4.
The initial surface reactions involved in the atomic layer deposition (ALD) of TiO2 from TiI4 and H2O onto a SiO2 substrate have been investigated using electronic structure calculations based on cluster models. The detailed atomic growth mechanisms on different types of functionalities on the SiO2 substrate have been proposed. The effects of quantum tunneling and hindered rotations of adsorbates on the rate of surface reactions have been investigated. The effects of tunneling were found to be negligible for all reactions, because typical ALD temperatures range from 150 to 450 degrees C. However, the rotational contributions to the rate constants must be taken into account in certain cases. All of the three surface functionalities investigated exhibit high chemical reactivity toward TiI4 precursors at typical ALD temperatures. The rate constants of the second half-reactions between Ti intermediates and H2O are 5-8 orders of magnitude smaller than the first half-reactions between TiI4 and the surface functionalities. Although the iodine release reaction has been used to explain previous experimental measurements, it is predicted to be unfavorable (kinetically and thermodynamically) and is unlikely to occur at typical ALD temperatures. Substitution of TiI4 with TiCl4 as the metal precursor can increase the binding energies of the absorbates onto the surface due to the high electronegativity of the Cl ligands. However, the activation barriers are not significantly different between these two metal precursors. More importantly, our calculations predict that TiI4 precursors tend to produce TiO2 films with fewer impurities than the TiCl4 precursors.  相似文献   

5.
Atomic layer deposition (ALD) was used to fabricate Al(2)O(3) recombination barriers in solid-state dye-sensitized solar cells (ss-DSSCs) employing an organic hole transport material (HTM) for the first time. Al(2)O(3) recombination barriers of varying thickness were incorporated into efficient ss-DSSCs utilizing the Z907 dye adsorbed onto a 2 μm-thick nanoporous TiO(2) active layer and the HTM spiro-OMeTAD. The impact of Al(2)O(3) barriers was also studied in devices employing different dyes, with increased active layer thicknesses, and with substrates that did not undergo the TiCl(4) surface treatment. In all instances, electron lifetimes (as determined by transient photovoltage measurements) increased and dark current was suppressed after Al(2)O(3) deposition. However, only when the TiCl(4) treatment was eliminated did device efficiency increase; in all other instances efficiency decreased due to a drop in short-circuit current. These results are attributed in the former case to the similar effects of Al(2)O(3) ALD and the TiCl(4) surface treatment whereas the insulating properties of Al(2)O(3) hinder charge injection and lead to current loss in TiCl(4)-treated devices. The impact of Al(2)O(3) barrier layers was unaffected by doubling the active layer thickness or using an alternative ruthenium dye, but a metal-free donor-π-acceptor dye exhibited a much smaller decrease in current due to its higher excited state energy. We develop a model employing prior research on Al(2)O(3) growth and dye kinetics that successfully predicts the reduction in device current as a function of ALD cycles and is extendable to different dye-barrier systems.  相似文献   

6.
Cobalt molybdenum compounds are important catalytic materials in many processes, e.g. in splitting of ammonia to form CO free hydrogen fuel. We here report on deposition of such cobalt molybdenum oxides by atomic layer deposition (ALD) using different types of metal precursors CoCp(2) (Cp = cyclopentadienyl), Co(thd)(2) (Hthd = 2,2,6,6-tetramethylheptan-3,5-dione), Mo(CO)(6) and oxygen precursors O(3), H(2)O, and (O(3) + H(2)O). The growth dynamics have been investigated using quartz crystal microbalance (QCM) methods. It is evident that mixing of the different precursor chemistries affect the growth patterns. When water is introduced to the reactions, a surface controlled mechanism takes place which guides the deposited stoichiometry towards the CoMoO(4) phase over a wide range of cobalt rich pulsed compositions. This is a rare example of how surface chemistry can control stoichiometry of depositions in ALD. The deposited films have been investigated by X-ray diffraction, Raman spectroscopy and atomic force microscopy. The catalytic activity of selected films have been characterized by temperature programmed ammonia decomposition, proving the films to be catalytically active and lowering the decomposition temperature by some 200 °C.  相似文献   

7.
Russian Journal of General Chemistry - Thin films of aluminum nitride and oxynitride were deposited by atomic layer deposition (ALD) in the temperature range from 170 to 290°C (optimal...  相似文献   

8.
前驱物对Mn-Ce/Ti-PILC低温SCR脱硝的影响   总被引:1,自引:0,他引:1  
分别采用TiCl4和钛酸丁酯为Ti前驱物制备了钛基交联黏土(Ti-PILC),通过浸渍法将锰铈负载于Ti-PILC上,制得催化剂Mn-Ce/Ti-PILCs和Mn-Ce/clay,测试了该催化剂在以氨气为还原剂的低温SCR过程中的催化活性,分析了Ti前驱物对黏土结构及催化性能的影响。XRD、BET、FT-IR、NH3-TPD和SEM等表征结果表明,与原土(clay)相比,经钛交联柱撑后,Ti-PILC的微观结构更加合理,其比表面积和孔容都有了一定程度的增加,表面酸性有所增强。与原土负载的Mn-Ce/clay催化剂相比,Mn-Ce/Ti-PILCs的催化活性明显提高。而且,钛酸丁酯作前驱物进行交联比TiCl4交联效果更明显,所得到的催化剂低温活性更好。  相似文献   

9.
The feasibility of niobium oxynitride formation through nitridation of niobium pentoxide films in ammonia by rapid thermal processing (RTP) was investigated. Niobium films 200 and 500 nm thick were deposited by sputtering on Si(100) wafers covered by a 100 nm thick thermally grown SiO2 layer. These as‐deposited films exhibited distinct texture effects. They were processed in three steps using an RTP system. The as‐deposited niobium films were first nitridated in an ammonia atmosphere at 1000 °C for 1 min and then oxidised in molecular oxygen at temperatures ranging from 400 to 600 °C. Those samples in which a single Nb2O5 phase was determined after oxidation were additionally nitridated in ammonia at 1000 °C for 1 min. Investigations show that surface roughness of the samples after oxidation of niobium films first nitridated in ammonia is lower than after direct oxidation of as‐deposited films in oxygen, although the niobium pentoxide phase formed after annealing was the same in both cases. We explain this result as being due to the large expansion of the niobium lattice during the direct oxidation of the niobium film in molecular oxygen and also to the high oxidation rate of the as‐deposited niobium film in oxygen. By incorporation of oxygen in the crystal lattice of niobium and rapid formation of niobium pentoxide, substantial intrinsic stress was built up in the film, frequently resulting in delamination of the film from the substrate. Nitrogen hinders the diffusion of oxygen in nitridated films, which leads to a decrease of the oxidation rate and thus slower formation of Nb2O5. Nitridation of the completely oxidised niobium films in ammonia leads to the formation of niobium oxynitride and niobium nitride phases.  相似文献   

10.
TitaniLlm-Silicalite(TS)'which\\'astirstsynthesizedbyTaramassoinl983'.isacatalyst`"ithquiterelnarkabIepr0pertiesil1theshape-selective0xidationoforganicc0mpounds``ithaqtleousH=O,.Duri11gtherece11tdecade.m0repapers0ntl1ehydrothermals}nthesisofTSwerereported:;'.MostoftI1eiraimsweretosearcl1cheapertemplates.buttherewerelbwpapersab0[lttI1egas-solidison10rph0ussubstitution.nan1el}secondar}'s}'nthesiswl1ichwasagoodwayofobtail1ingcheaperTS.lnthispaper,weshowedtheetTect0fAl3'.NH"andNa'0ntheTico…  相似文献   

11.
It is a common finding that titanocene-derived precursors do not yield TiO(2) films in atomic layer deposition (ALD) with water. For instance, ALD with Ti(OMe)(4) and water gives 0.5 ?/cycle, while TiCp*(OMe)(3) does not show any growth (Me = CH(3), Cp* = C(5)(CH(3))(5)). From mass spectrometry we found that Ti(OMe)(4) occurs in the gas phase practically exclusively as a monomer. We then used first principles density functional theory (DFT) to model the ALD reaction sequence and find the reason for the difference in growth behaviour. Both precursors adsorb initially via hydrogen-bonding. The simulations reveal that the Cp* ligand of TiCp*(OMe)(3) lowers the Lewis acidity of the Ti centre and prevents its coordination to surface O ('densification') during both of the ALD pulses. The effect of Cp* on Ti seems to be both steric (full coordination sphere) and electronic (lower electrophilicity). This crucial step in the sequence of ALD reactions is therefore not possible in the case of TiCp*(OMe)(3) + H(2)O, which means that there is no deposition of TiO(2) films.  相似文献   

12.
Transition‐metal phosphides (TMP) prepared by atomic layer deposition (ALD) are reported for the first time. Ultrathin Co‐P films were deposited by using PH3 plasma as the phosphorus source and an extra H2 plasma step to remove excess P in the growing films. The optimized ALD process proceeded by self‐limited layer‐by‐layer growth, and the deposited Co‐P films were highly pure and smooth. The Co‐P films deposited via ALD exhibited better electrochemical and photoelectrochemical hydrogen evolution reaction (HER) activities than similar Co‐P films prepared by the traditional post‐phosphorization method. Moreover, the deposition of ultrathin Co‐P films on periodic trenches was demonstrated, which highlights the broad and promising potential application of this ALD process for a conformal coating of TMP films on complex three‐dimensional (3D) architectures.  相似文献   

13.
肼溶胶-凝胶法制备高比表面积纳米氮化钛粉体的研究   总被引:1,自引:0,他引:1  
以无水肼作氮源, 采用肼溶胶-凝胶技术(HSG)成功地制备了TiN粉体, 研究了不同钛源、处理气氛及焙烧温度对TiN粉体晶化过程的影响, 并对其形成机理进行了讨论. 与氨气氮化法相比, 该方法所需温度低、TiN的粒径小、比表面积大, 并且分散均匀.  相似文献   

14.
The ruthenium complex bis-tetrabutylammonium cis-dithiocyanato-N,N'-bis-2,2'-bipyridine-4-carboxylic acid, 4'-carboxylate ruthenium(II), N-719, was found to block the dark current of dye sensitized solar cells (DSC), based on mesoporous TiO2 films deposited on a F-doped tin oxide electrode and the effect was compared to surface treatment by TiCl4 and the introduction of a compact TiO2 blocking layer.  相似文献   

15.
The nitridation of niobium films approximately 250 and 650 nm thick by rapid thermal processing (RTP) at 800 °C in molecular nitrogen or ammonia was investigated. The niobium films were deposited by electron beam evaporation on silicon substrates covered by a 100 or 300 nm thick thermally grown SiO2 layer. In these investigations the reactivity of ammonia and molecular nitrogen was compared with regard to nitride formation and reaction with the SiO2 substrate layer. The phases formed were characterized by X-ray diffraction (XRD). Depth profiles of the elements in the films were recorded by use of secondary neutral mass spectrometry (SNMS). Microstructure and spatial distribution of the elements were imaged by transmission electron microscopy (TEM) and energy-filtered TEM (EFTEM). Electron energy loss spectra (EELS) were taken at selected positions to discriminate between different nitride, oxynitride, and oxide phases. The results provide clear evidence of the expected higher reactivity of ammonia in nitride formation and reaction with the SiO2 substrate layer. Outdiffusion of oxygen into the niobium film and indiffusion of nitrogen from the surface of the film result in the formation of oxynitride in a zone adjacent to the Nb/SiO2 interface. SNMS profiles of nitrogen reveal a distinct tail which is attributed to enhanced diffusion of nitrogen along grain boundaries.  相似文献   

16.
The ability to electrodeposit titanium at low temperatures would be an important breakthrough for making corrosion resistant layers on a variety of technically important materials. Ionic liquids have often been considered as suitable solvents for the electrodeposition of titanium. In the present paper we have extensively investigated whether titanium can be electrodeposited from its halides (TiCl(4), TiF(4), TiI(4)) in different ionic liquids, namely1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([EMIm]Tf(2)N), 1-butyl-1-methylpyrrolidinium bis(trifluoromethyl-sulfonyl)amide ([BMP]Tf(2)N), and trihexyltetradecyl-phosphonium bis(trifluoromethylsulfonyl)amide ([P(14,6,6,6)]Tf(2)N). Cyclic voltammetry and EQCM measurements show that, instead of elemental Ti, only non-stoichiometric halides are formed, for example with average stoichiometries of TiCl(0.2), TiCl(0.5) and TiCl(1.1). In situ STM measurements show that-in the best case-an ultrathin layer of Ti or TiCl(x) with thickness below 1 nm can be obtained. In addition, results from both electrochemical and chemical reduction experiments of TiCl(4) in a number of these ionic liquids support the formation of insoluble titanium cation-chloride complex species often involving the solvent. Solubility studies suggest that TiCl(3) and, particularly, TiCl(2) have very limited solubility in these Tf(2)N based ionic liquids. Therefore it does not appear possible to reduce Ti(4+) completely to the metal in the presence of chloride. Successful deposition processing for titanium in ionic liquids will require different maybe tailor-made titanium precursors that avoid these problems.  相似文献   

17.
TiO2纳米粒子膜表面性质的研究   总被引:14,自引:0,他引:14  
TiO_2纳米粒子膜在光催化降解大气和水中的污染物[1]、光电转换[2]、光致变色[3]等方面有广阔的应用前景,近年来受到了科学界的高度重视.研究表明,膜的表面性质对如上应用有着重要影响.本文采用等离子体化学气相沉积法(PECVD法)[4]制备了TiO2的纳米粒子膜,分别采用TiCl4等离子体或O2等离子体处理膜表面,获得两种不同表面性质的TiO2纳米粒子膜;并利用表面光电压谱(SPS)和电场诱导表面光电压谱(EFISPS)技术对膜的表面性质进行具体分析,探讨了其在光催化领域的可能应用.1实验部…  相似文献   

18.
X-ray absorption and X-ray photoelectron spectroscopy are used to investigate NaAlH4 doped with 5 mol % of Ti on the basis of either TiCl3 or Ti13.6THF by ball milling. X-ray photoelectron spectroscopy (XPS) analysis of TiCl3 or Ti colloid doped samples indicates that Ti species do not remain on the sample surface but are driven into the material with increasing milling time. The surface concentration of Ti continues to decrease during subsequent cycles under hydrogen. After several cycles, it reaches a constant value of 0.5 at. % independently of the nature of the precursor. Moreover, metallic aluminum is already present at the surface after 2 min of ball milling in the case of TiCl3 doped Na-alanate, whereas it is totally absent in the case of Ti colloid doped samples at any milling time. Upon cycling, the atomic concentration of metallic Al at the surface evolves with the reaction under hydrogen, in contrast to the Ti concentration. Analysis of the binding energies of samples doped with TiCl3 or Ti colloid, after eight desorption/absorption cycles, reveals that the Na, O, and Ti environment remains the same, while the Al environment undergoes changes. According to the extended X-ray absorption fine structure (EXAFS) analysis of TiCl3 doped Na-alanate, the local structure around Ti during the first cycle is close to that of metallic Ti but in a more distorted state. In the case of the Ti colloid doped sample, a stripping of the oxygen shell occurs. After eight cycles, a similar intermetallic phase between Ti and Al is present in the hydrogenated state of TiCl3 or Ti colloid doped samples. The local structure around Ti atoms after eight cycles consists of Al and Ti backscatterers with a Ti-Al distance of 2.79 angstroms and a Ti-Ti distance of 3.88 angstroms. This local structure is not exactly the TiAl3 phase because it differs significantly from the alloy phase in its fine structure and lacks long-range order. Volumetric measurements performed on these samples indicate that the formation of this local structure is responsible for the reduction of the reversible hydrogen capacity with the increasing number of cycles. Moreover, the formation of the alloy-like phase is correlated with a decrease of the desorption/absorption reaction rate.  相似文献   

19.
电沉积二氧化钛纳米微粒膜的光电化学性能和表面形貌研究   总被引:19,自引:1,他引:19  
采用光电流谱、透射光谱和扫描微探针显微镜技术对电沉积法制备的二氧化钛纳米微粒膜的光电化学性能和表面形貌进行了研究.结果表明,不同制备条件下的二氧化钛纳米微粒膜具有与紧密的半导体电极不同的光电化学性质,并探讨了其光电化学性能与表面形貌的关系.  相似文献   

20.
Formation of niobium nitride by rapid thermal processing   总被引:1,自引:0,他引:1  
The formation of group V transition metal nitride films by means of rapid thermal processing (RTP) has been investigated. Here we focus on the nitridation of niobium films of 200-500 nm thickness in the temperature range from 500 to 1,100 degrees C under laminar flow of molecular nitrogen or ammonia. The nitride phases formed were characterized by X-ray diffraction (XRD). Secondary neutral mass spectrometry (SNMS) and transmission electron microscopy (TEM) in combination with electron energy loss spectroscopy (EELS) were carried out on samples of selected experiments to provide more detailed information about the initial stages of nitride formation and the microstructure of the films. A classical formation sequence of nitride phases was observed with increasing nitrogen content in the order: alpha-Nb(N) --> beta-Nb2N --> gamma-Nb4N3 --> delta'-NbN --> Nb5N6. Furthermore, oxide enriched regions were discovered inside the metal films. These turned out to be formed mainly in the nitride sequence between the a-alphaNb(N) and beta-Nb2N-phases at the Nb/SiO2 interface due to a reaction of the Nb with the SiO2 layer of the silicon substrates on which the films had been deposited. The SiO2 layer acts as diffusion barrier for nitrogen but also as source for oxygen, according to SNMS and TEM/EELS studies, resulting in the formation of Nb-oxides and/or oxynitrides at the Nb/SiO2 interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号