共查询到20条相似文献,搜索用时 0 毫秒
1.
L-Enantiomers of transition state analogue inhibitors bound to human purine nucleoside phosphorylase
Rinaldo-Matthis A Murkin AS Ramagopal UA Clinch K Mee SP Evans GB Tyler PC Furneaux RH Almo SC Schramm VL 《Journal of the American Chemical Society》2008,130(3):842-844
Human purine nucleoside phosphorylase (PNP) was crystallized with transition-state analogue inhibitors Immucillin-H and DADMe-Immucillin-H synthesized with ribosyl mimics of l-stereochemistry. The inhibitors demonstrate that major driving forces for tight binding of these analogues are the leaving group interaction and the cationic mimicry of the transition state, even though large geometric changes occur with d-Immucillins and l-Immucillins bound to human PNP. 相似文献
2.
A theozyme for antibody aldolases has been studied at the MP2/6-31G** computational level. Formation of two cooperative hydrogen-bonds between the acidic hydrogen atoms of the enamine and of a methanol molecule with the oxygen atom of the aldol acceptor markedly favors the C-C bond-formation associated with the aldol reaction. A comparative analysis of the geometry, the charge distribution and the shape of the molecular electrostatic potential of the transition structure (TS) with the covalent adduct, resulting from the reaction of methylamine and the beta-diketone used as a hapten allows us to characterize the transition-state analogue (TSA) generated at immunization. This finding allows us to propose a hapten based on a chiral beta-ketosulfoxide that could give the formation of a TSA that addresses the tetrahedral geometry of the TS. 相似文献
3.
The mechanism of action of inosine-uridine nucleoside hydrolase has been investigated by long-term molecular dynamics (MD) simulation in TIP3P water using stochastic boundary conditions. Five MD studies have been performed with enzyme substrate complex (E.S), enzyme substrate complex with protonated His241 (EH.S), enzyme transition state complex (E.TS), enzyme transition state complex with protonated His241 (EH.TS), and His241Ala transition state complex E(H241A).TS. Special attention has been given to the role of His241, which has been considered as the general acid catalyst to assist departure of the leaving nucleobase on the basis of its location in the active site in the X-ray crystal structure (). Yet on the basis of the location in the active site, Tyr229 is closer to the aniline ring of pAPIR as compared to His241. On initiation of MD simulations, His241 does not approach the nucleobase in the structures of EH.S, E.S, EH.TS, and E.TS. In the solvated enzyme, Tyr229, which is a member of the hydrogen bonding network inosine O2'.Asp14.His241.Tyr229.inosine N7, serves as a proton source to the leaving nucleobase. The loss of significant activity of His241Ala mutant is shown to be related to the disruption of the above hydrogen bonded network and the distancing of Tyr229 from inosine N7. The structures of the enzyme complexes with substrate or TS are not visibly altered on protonation of His241, a most unusual outcome. The bell-shaped pH dependence upon pK(app)'s of 7.1 and 9.1 may be attributed to the necessity of the dissociation of Asp10 or Asp15 and the acid form of Tyr229, respectively. In TS, the residue Ile81 migrated closer, whereas Arg233 moved away from the nucleobase. The probability of ribooxocarbenium ion stabilization by Asn168 and Asp14 is discussed. The Asp14-CO(2)(-) is hydrogen bonded to the ribose 2'-OH for 96% of the MD simulation time. Nucleophilic addition of water138 to ribooxocarbenium ion is suggested to be assisted by the proton shuttle from water138 --> Asp10 --> Asp15 --> water pool. An anticorrelation motion between Tyr229-OH and Asn168-OD1 in EH.S and E.S is observed. The relationship of this anticorrelated motion to mechanism, if any, deserves further exploration, perhaps the formation of a near attack conformation. 相似文献
4.
[reaction: see text] The expeditious convergent synthesis of the potent human purine nucleoside phosphorylase inhibitor DADMe-Immucillin-G (3) was achieved via the Mannich reaction. The Mannich chemistry of a series of deazapurines and amine hydrochlorides was also investigated. 相似文献
5.
Summary Applying the semiempirical MO methods AM1 and PM3 as well as the density functional theory to the model of the catalytic site composed of ca. 160–190 atoms, we have carried out studies aimed at the explanation of three aspects of the mechanism of action of aspartic proteinases: the site of dissociation within the catalytic diad COOH/COO- (i) in the free enzyme and (ii) in the Michaelis complex, and (iii) the energy changes associated with the catalytic paths. We have found that the state of dissociation within the catalytic diad is ligand-sensitive. In the free enzyme and in the intermediate complexes, Asp33 prefers to be dissociated with the outer oxygen of Asp213 protonated, while in the Michaelis and product complexes the opposite holds true. This is in agreement with recent mechanistic hypotheses and with some experimental results by FTIR and NMR. The energy diagram for the catalysis indicates that electronic effects are responsible most of all for the relative reduction of energy of the intermediates and possibly transition states on the catalytic reaction path. The shape of the diagram qualitatively agrees with the transition-state analogue theory for the enzymatic reactions. 相似文献
6.
Clinch K Evans GB Fleet GW Furneaux RH Johnson SW Lenz DH Mee SP Rands PR Schramm VL Taylor Ringia EA Tyler PC 《Organic & biomolecular chemistry》2006,4(6):1131-1139
(1R)-1-(9-Deazahypoxanthin-9-yl)-1,4-dideoxy-1,4-imino-L-ribitol [(+)-5] and (3S,4S)-1-[(9-deazahypoxanthin-9-yl)methyl]-4-(hydroxymethyl)pyrrolidin-3-ol [(-)-6] are the L-enantiomers of immucillin-H (D-ImmH) and DADMe-immucillin-H (D-DADMe-ImmH), respectively, these D-isomers being high affinity transition state analogue inhibitors of purine nucleoside phosphorylases (PNPases) developed as potential pharmaceuticals against diseases involving irregular activation of T-cells. The C-nucleoside hydrochloride D-ImmH [(-)-5) x HCl], now "Fodosine" is in phase II clinical trials as an anti-T-cell leukaemia agent, while D-DADMe-ImmH is a second generation inhibitor with extreme binding to the target enzyme and has entered the clinic for phase I testing as an anti-psoriasis drug. Since the enantiomers of some pharmaceuticals have revealed surprising biological activities, the L-nucleoside analogues (+)-5 x HCl and (-)-6, respectively, of D-ImmH and D-DADMe-ImmH, were prepared and their PNPase binding properties were studied. For the synthesis of compound (-)-6 suitable enzyme-based routes to the enantiomerically pure starting material (3S,4S)-4-(hydroxymethyl)pyrrolidin-3-ol [(-)-6] and its enantiomer were developed. The L-enantiomers (+)-5 x HCl and (-)-6 bind to the PNPases approximately 5- to 600-times less well than do the D-compounds, but nevertheless remain powerful inhibitors with nanomolar dissociation constants. 相似文献
7.
The refolding mechanism of apomyoglobin (apoMb) subsequent to high-temperature unfolding has been examined using computer simulations with atomic level detail. The folding of this protein has been extensively studied experimentally, providing a large database of folding parameters which can be probed using simulations. In the present study, 4-folding trajectories of apoMb were computed starting from coiled structures. A crystal structure of sperm whale myoglobin taken from the Protein Data Bank was used to construct the final native conformation by removal of the heme group followed by energy optimization. The initial unfolded conformations were obtained from high-temperature molecular dynamics simulations. Room-temperature refolding trajectories at neutral pH were obtained using the stochastic difference equation in length algorithm. The folding trajectories were compared with experimental results and two previous molecular dynamics studies at low pH. In contrast to the previous simulations, an extended intermediate with large helical content was not observed. In the present study, a structural collapse occurs without formation of helices or native contacts. Once the protein structure is more compact (radius of gyration<18 A) secondary and tertiary structures appear. These results suggest that apoMb follows a different folding pathway after high-temperature denaturation. 相似文献
8.
Heck MP Vincent SP Murray BW Bellamy F Wong CH Mioskowski C 《Journal of the American Chemical Society》2004,126(7):1971-1979
A series of monocyclic glycoamidines bearing different exocyclic amine, alcohol, or alkyl functionalities and bicyclic amidines derived from D-glucose and D-mannose were synthesized and tested as inhibitors of various glycosidases. All the prepared compounds demonstrated good to excellent inhibition toward glycosidases. In particular, the biscationic D-mannoamidine 9b bearing an exocyclic ethylamine moiety proved to be a selective competitive inhibitor of alpha- and beta-mannosidases (K(i) = 6 nM) making it the most potent inhibitor of these glycosidases reported to date. A favorable B(2,5) boat conformation might explain the selectivity of mannosidase inhibition compared to other glycosidases. 相似文献
9.
A quantum mechanical/molecular mechanical (QM/MM) study of the formation of the elusive active species Compound I (Cpd I) of nitric oxide synthase (NOS) from the oxyferrous intermediate shows that two protons have to be provided to produce a reaction that is reasonably exothermic and that leads to the appearance of a radical on the tetrahydrobiopterin cofactor. Molecular dynamics and energy considerations show that a possible source of proton is the water H-bond chain formed from the surface to the active site, but that a water molecule by itself cannot be the source of the proton; an H3O+ species that is propagated along the chain is more likely. The QM/MM calculations demonstrate that Cpd I and H2O are formed from the ferric-hydrogen peroxide complex in a unique heterolytic O-O cleavage mechanism. The properties of the so-formed Cpd I are compared with those of the known species of chloroperoxidase, and the geometry and spin densities are found to be compatible. The M?ssbauer parameters are calculated and may serve as experimental probes in attempts to characterize NOS Cpd I. 相似文献
10.
It is believed that the binding of pyrimidin-2-one to cytosine deaminase (CD) leads to the formation of 4-[R]-hydroxyl-3,4-dihydropyrimidine (DHP). Here the formation of transition-state analogue (TSA) at the active site of yeast cytosine deaminase (yCD) is investigated by quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) and free energy simulations. It is shown that DHP may in fact be unstable in the active site and a proton transfer from the Zn hydroxide group to Glu-64 may occur during the nucleophilic attack, leading to an alkoxide-like TSA complex instead. The free energy simulations for the nucleophilic attack process show that the proton transfer from the Zn hydroxide to Glu-64 may play an important role in stabilizing the TSA complex. 相似文献
11.
The first protonation constant for VO(3-)(4) has been determined spectrophotometrically at 25 degrees in 1M sodium chloride and found to have the value log K = 13.29 +/- 0.01. Individual absorption spectra for VO(3-)(4) and HVO(2-)(4) have been calculated (for the range 218-350 nm) from experimental absorbance measurements. 相似文献
12.
Amipurimycin, a member of the complex peptidyl nucleoside family of antibiotics, is a Streptomyces-derived potent antifungal agent. The mechanism of action of amipurimycin, however, remains undetermined. Additionally, there are no reports on the total synthesis or structure-activity relationships (SAR) of this potentially useful bioactive compound. In a study aimed at the total synthesis and SAR studies of this natural product, the present research reports the development of a synthetic route to the central pyranosyl amino acid core of amipurimycin and its further elaboration, culminating in the synthesis of a unique thymine analogue. Utilizing a d-serine-derived dihydroaminopyrone as a strategic building block, the synthesis involves de novo construction of the fully functionalized C-3-branched carbohydrate amino acid core, followed by glycosidic attachment of thymine at C-1, and peptidic linking of the C-6 amine with the 1,2-aminocyclopentane carboxylic acid side chain. 相似文献
13.
Cytidine deaminase (CDA) is a zinc metalloenzyme that catalyzes the hydrolytic deamination of cytidine to uridine. Zebularine (ZEB) binds to CDA, and the binding process leads to a near-perfect transition-state analogue (TSA) inhibitor at the active site with an estimated K(i) value of 1.2 x 10(-)(12) M. The interaction of CDA with the TSA inhibitor has become a paradigm for studying the tight TSA binding by enzymes. The formation of the TSA is catalyzed by CDA by a mechanism that is similar to the formation of the tetrahedral intermediate during the CDA-catalyzed reaction (i.e., through the nucleophilic attack of a Zn-hydroxide group on C(4)). It is believed that the TSA formed at the active site is zebularine 3,4-hydrate. In this paper, it is shown from QM/MM molecular dynamics and free energy simulations that zebularine 3,4-hydrate may in fact be unstable in the enzyme and that a proton transfer from the Zn-hydroxide group to Glu-104 during the nucleophilic attack could be responsible for the very high affinity. The nucleophilic attack by the Zn-hydroxide on C(4) is found to be concerted with two proton transfers. Such concerted process allows the TSA, an alkoxide-like inhibitor, to be stabilized through a mechanism that is similar to the transition-state stabilization in the general acid-base catalysis. It is suggested that the proton transfer from the Zn-hydroxide to Glu-104, which is required to generate the general acid for protonating the leaving ammonia, may play an important role in lowering the activation barrier during the catalysis. 相似文献
14.
The protonation constant of hexamethylenetetramine (urotropine) was determined by a potentiometric and a spectrophotometric method. The calculations gave log KHL (concentration constants): 4·89 at μ = 0·1 and 5·05 at μ = 0·5. The temperature was 25° and potassium chloride was used to adjust the ionic strength. 相似文献
15.
Molecular dynamics simulations have been performed to gain insights into the catalytic mechanism of the hydrolysis of epoxides to vicinal diols by soluble epoxide hydrolase (sEH). The binding of a substrate, 1S,2S-trans-methylstyrene oxide, was studied in two conformations in the active site of the enzyme. It was found that only one is likely to be found in the active enzyme. In the preferred conformation the phenyl group of the substrate is pi-sandwiched between two aromatic residues, Tyr381 and His523, whereas the other conformation is pi-stacked with only one aromatic residue, Trp334. Two simulations were carried out to 1 ns for each conformation to evaluate the protonation state of active site residue His523. It was found that a protonated histidine is essential for keeping the active site from being disrupted. Long time scale, 4 ns, molecular dynamics simulation was done for the structure with the most likely combination of binding conformation and protonation state of His523. Near Attack Conformers (NACs) are present 5.3% of the time and nucleophilic attack on either epoxide carbon atom, approximately 75% on C(1) and approximately 25% on C(2), is found. A maximum of one hydrogen bond between the epoxide oxygen and either of the active site tyrosines, Tyr465 and Tyr381, is present, in agreement with experimental mutagenesis results that reveal a slight loss in activity if one tyrosine is mutated and essential loss of all activity upon double mutation of the two tyrosines in question. It was found that a hydrogen bond from Tyr465 to the substrate oxygen is essential for controlling the regioselectivity of the reaction. Furthermore, a relationship between the presence of this hydrogen bond and the separation of reactants was found. Two groups of amino acid segments were identified each as moving collectively. Furthermore, an overall anti-correlation was found between the movements of these two individually collectively moving groups, made up by parts of the cap-region, including the two tyrosines, and the site of the catalytic triad, respectively. This overall anti-correlated collective domain motion is, perhaps, involved in the conversion of E.NAC to E.TS. 相似文献
16.
The energy and approximate structure of certain S(0)/S(1) conical intersections (CI) are shown computationally to be deducible from those of two bound states: the first triplet (T(1)), which is iso-energetic with the CI, and the second excited singlet state (S(2)). This is demonstrated for acepentalene (I) and its perfluoro derivative (II) using the twin state concept for three states systems and based on the fact that the triplet T(1) is almost degenerate with the CI. The stable S(2) (C(3v) configuration) state exhibits unusual exaltation of Jahn-Teller active degenerate mode-ν(JT) = 2058 cm(-1) (~500 cm(-1) higher than analogous e-mode of the symmetric (C(3v)) T(1) and the dianion I(-2) or any C-C vibration of the Jahn-Teller distorted (C(s)) ground state minimum). The acepentalene molecule, whose rigid structure and possibility to attain the relatively high symmetry C(3v) configuration, is a particularly suitable candidate for this purpose. 相似文献
17.
18.
Antipina MN Dobner B Konovalov OV Shapovalov VL Brezesinski G 《The journal of physical chemistry. B》2007,111(49):13845-13850
In order to be used in versatile DNA delivery systems, novel cationic lipids were synthesized. The head groups of the new compounds represented by monoamines or oligoamines can be charged or uncharged depending on the environmental pH. Since their pK values are unknown, the protonation properties of these lipids have been studied in a wide pH range. In our experiments, the amphiphilic molecules were organized as a Langmuir monolayer at the air-water interface. Total reflection X-ray fluorescence (TRXF) was used to determine the 2D concentration of bromide counterions bound to a positively charged (protonated) Langmuir monolayer. The protonation rate of the novel cationic lipids was estimated by comparing the fluorescence intensity with that of dioctadecyldimethylammonium bromide monolayers as a reference. TRXF investigations were supplemented with results of film-balance measurements, grazing incidence X-ray diffraction, and X-ray reflectivity data. The results obtained display that the monolayers of all studied compounds are completely uncharged at pH values above 10. In the investigated pH region, the highest protonation rate of the monolayers is observed at pH 3. The influence of the monolayer packing density on the protonation properties is clearly shown. 相似文献
19.
The detailed mechanism of metal-cysteine binding is still poorly understood. It is not clear if every metal cation can induce cysteine deprotonation, how the dielectric medium affects this process, and the extent to which other ligands from the metal's first and second coordination shell influence cysteine ionization. It is also not clear if the zinc cation, with its positive charge reduced by charge transfer from the first two bound cysteinates, could still assist deprotonation of the next one or two cysteines in Cys3His and Cys4 zinc-finger cores. Here, we elucidate the factors governing the cysteine protonation state in metal-binding sites, in particular in Zn.Cys4 complexes, using a combined ab initio and continuum dielectric approach. Transition metal dications such as Zn2+ and Cu2+ and trivalent cations such as Al3+ with pronounced ability to accept charge from negatively charged Cys- are predicted to induce cysteine deprotonation, but not "hard" divalent cations such as Mg2+. A high dielectric medium was found to favor cysteine deprotonation, while a low one favored the protonated state. Polarizable ligands in the metal's first shell that can competitively donate charge to the metal cation were found to lower the efficiency of the metal-assisted cysteine deprotonation. The calculations predict that the zinc cation could assist deprotonation of all the cysteines during the folding of Cys4 zinc-finger cores and the [Zn.(Cys-)4]2- state is likely to be preserved in the final folded conformation of the protein provided the binding site is tightly encapsulated by backbone peptide groups or lysine/arginine side chains, which stabilize the ionized cysteine core. 相似文献
20.
Phosphate and ribose 1-phosphate (R1P) bound to human purine nucleoside phosphorylase (PNP) have been studied by FTIR spectroscopy for comparison with phosphate bound with a transition state analogue. Bound phosphate is dianionic but exists in two distinct binding modes with similar binding affinities. The phosphate of bound R1P is also dianionic. Bound R1P slowly hydrolyzes to ribose and phosphate even in the absence of nucleobase. The C-OP bond is cleaved in bound R1P, the same as in the PNP-catalyzed reaction. Free R1P undergoes both C-OP and CO-P solvolysis. A hydrogen bond to one P-O group is stronger than those to the other two P-O groups in both the PNP.R1P complex and in one form of the PNP.PO4 complex. The average hydrogen bond strength to the PO bonds in the PNP.R1P complex is less than that in water but stronger than that in the PNP.PO4 complex. Hydrolysis of bound R1P may be initiated by distortion of the phosphate moiety in bound R1P. The unfavorable interactions on the phosphate moiety of bound R1P are relieved by dissociation of R1P from PNP or by hydrolysis to ribose and phosphate. The two forms of bound phosphate in the PNP.PO4 complex are interpreted to be phosphate positioned as the product in the nucleoside synthesis direction and as the reactant in the phosphorolysis reaction; their interconversion can occur by the transfer of a proton from one PO bond to another. The electronic structure of phosphate bound with a transition state analogue differs substantially from that in the Michaelis complexes. 相似文献